PT. RAVISHANKAR SHUKLA UNIVERSITY Center for Basic Sciences

CURRICULUM & SYLLABI [Based on LOCF]

Five Year Integrated M.Sc. (Biology Stream) (Semester System)

Session: 2024-25 & onwards

Approved by:	Board of Studies Bioscience	Academic Council
Date: 10 5 14	Att OKTON	

PT. RAVISHANKAR SHUKLA UNIVERSITY RAIPUR, CHHATTISGARH

Center for Basic Sciences

Objectives

The CBS model of education is concept-based and inquiry-driven, as opposed to the more traditional content-based models. There is a strong emphasis on the interdisciplinary nature of today's science, and recognition of the importance of research experience in undergraduate education.

Courses offered in the Int. M. Sc. program at CBS form part of a comprehensive program that will enable the students-

- To understand the basic laws of nature and develop necessary skills to apply them to any desired area or discipline.
- To undertake projects to solve field base problems.
- To provide student centric learning facilities for the development of overall personality of learner. The program is planned as student-centric collaborative learning.
- Students get trained for a career in basic sciences or any related applied science or technology.

Integrated Master of Science in Biology

Courses offered during the first year (Semesters I to II) are meant as basic and introductory courses in Biology, Chemistry, Mathematics, Physics and Environmental Science. These are common and mandatory for all students. These courses are intended to give a flavour of the various approaches and analyses and to prepare the students for advanced courses in later years of study. In addition, there will be Interdisciplinary Courses for computational skills and mathematical methods. Students are also given training to develop skills in Communication, Creative & Technical Writing and History of Science through courses in Humanities and Social Sciences. In the second year (Semester - III), students have the freedom to choose their stream for masters program on the bases of their interest. Courses offered in the first two years would help them make an informed judgment to determine their real interest and aptitude for a given subject.

One of the important features that the CBS has adopted is semester-long projects called Lab projects and reading projects, which are given the same weightage as a regular course. By availing this, a student can work in an experimental lab or take up a theory project every semester. This is meant to help the student get trained in research methodology, which will form a good basis for the 9th semester project work in the fifth year. The subjects/courses are described further with their credit points. Few courses are common to different streams.

Program Outcomes

Integrated M.Sc. Biology is 5-year, 10 semester course. The outcome goals can be realized by engaging with the diverse components integrated into the curriculum, as outlined below. Each of these components is meticulously crafted to yield particular outcomes sought upon the successful completion of the program.

PO-1	Knowledge: Provides deep understanding of all the theoretical as well as practical aspects in basic and applied areas of biological sciences.
PO-2	Critical Thinking and Reasoning: Exhibit advanced critical thinking and reasoning skills, enabling them to critically evaluate and analyze complex biological fundamentals and experiments.
PO-3	Problem Solving: Applying the biological fundamentals and problem-solving skills to tackle intricate scientific and real-world issues.
PO-4	Advanced Analytical and Computational Skills: Proficient in employing advanced analytical techniques and computational tools to conduct in-depth biological problems and research.
PO-5	Effective Communication : Effectively communicate complex scientific concepts and research findings to both technical and non-technical audiences, using written reports, presentations, and

23	teaching.
PO-6	Social/Interdisciplinary Interaction : Integrate biological concepts and methodologies into interdisciplinary contexts, collaborating effectively with professionals from various fields to address complex scientific and societal challenges.
PO-7	Self-directed and Life-long Learning: Recognize the importance of ongoing professional development and lifelong learning in the dynamic field of biological sciences and acquire knowledge and skills in biological techniques throughout their professional careers.
PO-8	Effective Citizenship; Leadership and Innovation: Capable to identify, formulate, investigate and analyze the scientific problems and innovatively to design and create products and solutions to real life problems
PO-9	Ethics : Maintain the highest ethical standards in research and professional conduct within the field of biological sciences
PO-10	
PO-11	Global Perspective: Recognize the global nature of scientific research in biological sciences and its impact, appreciating diverse cultural perspectives in scientific practices and considering international contexts in their work.

Program Specific Outcomes (PSOs)

Upon successful completion of the program students will be able to attain following outcomes-

5.24

PSO1	Comprehensive understanding of fundamentals, principles and practical aspects of biological sciences							
PSO2 Apply the knowledge of biology including Plant sciences and Anir sciences in interdisciplinary fields to address and solve societal issue								
PSO3	Apply the analytical instruments and computation programs ensuring precision, efficiency, and innovation in scientific research, industry, healthcare, environment and education.							
PSO4	Proficiently convey and promote ideas in the field of biological sciences to disseminate knowledge and enhance the awareness about biological							

10,

57224

	research and concepts in the community.
PSO5	Qualify national and state-level examinations like GATE, NET, SLET, and SET can lead to career opportunities in academia, research, and related fields.

Integrated M.Sc. in Biology

Specification of Course	Semester	No. of Courses	Credits
Core	I-IX	63	220
	> Theory	42	144
1	> Practical	18	48
	Project/Dissertation	03	28
Elective	x	04	20
Total		67	240
Additional Course	s (Qualifying in nature, for s	Student admitted in	CBS only)
		01	02
Skill Enhancement /Value Added Courses	v	01	02
	VI	01	02
	VII	01	02
Skill Enhancement Course (only for Biology students)	VIII	01	02

h

5.24 0

6

21 28

5 2 9

Course Structure for the Integrated M.Sc. Biology Stream

Effective from Session 2024-25

(Abbreviation: B: Biology, C: Chemistry, M: Mathematics, P: Physics, G: General, H: Humanities, BL: Biology Laboratory, CL: Chemistry Laboratory, PL: Physics Laboratory, GL: General Laboratory, BE: Biology Elective

- Minimum total credits for Integrated M.Sc. degree is 240.
- Semesters I to VIII will carry 25 credits each.
- Semesters IX and X will carry 20 credits each.

Course Nature	Course Code	Course Title	Course	Contact Hours	Credits	Marks			
			Туре (T/P)	/Week (Theory +Tutorials)		CIA	ESE	Total	
Core	B101	Biology – I	Т	[2+1]	3	60	40	100	
Core	C101	Chemistry - I	Т	[2+1]	3	60	40	100	
Core	M101/MB101	Mathematics - I	Т	[2+1]	3	60	40	100	
Core	P101	Physics - I	Т	[2+1]	3	60	40	100	
Core	G101	Computer Basics	Т	[2+1]	3	60	40	100	
Core	H101	Communication Skills	Т	[2]	2	60	40	100	
Core	PL101	Physics Laboratory – I	Р	[4]	2	60	40	100	
Core	CL101	Chemistry Laboratory – I	Р	[4]	2	60	40	100	
Core	BL101	Biology Laboratory – I	Р	[4]	2	60	40	100	
Core	GL101	Computer Laboratory	Р	[4]	2	60	40	100	
-		(25 of 240 credits)	17	Total	25				
Additional Paper	ES101	Environmental Studies	Т	[2]	2	60	40	10	

FIRST YEAR Semester –I

в

Course	Course True	Seme	ster- II				
Code	Course Title	Course Contact Hours		Credits	Marks		
B201			+Tutorials)		CIA	ESE	Total
	Biology – II	т					
	Chemistry - II			3	60	40	100
	Mathematics - II			3	60	40	100
		1	[2 + 1]	3	60	40	100
	Physics - II						1
G201	Electronics and		[2 + 1]	3	60	40	100
	Instrumentation	Т	[2+1]	3	60		100
PL201	Physics					-10	100
	Laboratory II	P	[4]	2	60	10	100
CL201	Chemister			-	00	40	100
	Loband	P	[4]	2			
BL201	Laboratory - II		1.1		60	40	100
SELUI	Biology	P	[4]	-			
CT as a	Laboratory - II		[4]	2	60	40	100
GL201		Р				1	
	Laboratory		[4]	2	60	40	100
H201		b				0	1
	Skills Lab	P	[4]	2	60	40	100
					8.8	40	100
			Total	25		-	-
ES201				0.000			
		T	[2]	2	60		10
	Code B201 C201 M201/ MB201 P201 G201 PL201 CL201 BL201 BL201 H201	Code Biology – II B201 Biology – II C201 Chemistry – II M201/ Mathematics – II MB201 Physics – II G201 Physics – II G201 Electronics and Instrumentation PL201 Physics Laboratory – II CL201 Chemistry Laboratory – II BL201 Biology Laboratory – II GL201 Electronics Laboratory H201 Communication Skills Lab (50 of 240 credits) Credits)	CodeCourse TitleCourse Type (T/P)B201Biology - IITB201Chemistry - IITC201Chemistry - IITM201/Mathematics - IITMB201Physics - IITP201Physics - IITG201Electronics and InstrumentationTPL201PhysicsPLaboratory - IIPCL201Chemistry Laboratory - IIPBL201Biology Laboratory - IIPGL201Electronics P LaboratoryPH201Communication Skills LabPCl201EnvironmentalT	CodeCourse TitleCourse Type (T/P)Contact Hours /Week (Theory +Tutorials)B201Biology - IIT[2 + 1]C201Chemistry - IIT[2 + 1]M201/Mathematics - IIT[2 + 1]MB201Physics - IIT[2 + 1]P201Physics - IIT[2 + 1]G201Electronics and InstrumentationT[2 + 1]PL201PhysicsP[4]CL201Chemistry Laboratory - IIP[4]BL201Biology Laboratory - IIP[4]GL201Electronics Laboratory - IIP[4]H201Communication Skills LabP[4]H201Communication Skills LabP[4]ES201EnvironmentalTTotal	CodeDourse TitleCourse Type (T/P)Contact Hours /Week (Theory +Tutorials)CreditsB201Biology - 11T[2 + 1]3C201Chemistry - 11T[2 + 1]3M201/Mathematics - 11T[2 + 1]3M201/Mathematics - 11T[2 + 1]3M201Physics - 11T[2 + 1]3P201Physics - 11T[2 + 1]3G201Electronics and InstrumentationT[2 + 1]3PL201Physics Laboratory - 11P[4]2CL201Chemistry Laboratory - 11P[4]2BL201Biology 	CodeDownser HiteCourse Type (T/P)Contact Hours /Week (Theory +Tutorials)CreditsB201Biology - IIT $[2 + 1]$ 360C201Chemistry - IIT $[2 + 1]$ 360M201/Mathematics - IIT $[2 + 1]$ 360MB201Physics - IIT $[2 + 1]$ 360P201Physics - IIT $[2 + 1]$ 360G201Electronics and InstrumentationT $[2 + 1]$ 360PL201PhysicsP $[4]$ 260CL201ChemistryP $[4]$ 260CL201ElectronicsP $[4]$ 260BL201BiologyP $[4]$ 260BL201BiologyP $[4]$ 260H201CommunicationP $[4]$ 260H201CommunicationP $[4]$ 260H201ElectronicsP $[4]$ 260H	CodeSourse TitleCourse Type (T/P)Contact Hours /Week (Theory +Tutorials)CreditsMarksB201Biology - IIT[2+1]36040C201Chemistry - IIT[2+1]36040M201/Mathematics - IIT[2+1]36040MB201Mathematics - IIT[2+1]36040P201Physics - IIT[2+1]36040P201Physics - IIT[2+1]36040P201Physics - IIT[2+1]36040P201Physics - IIT[2+1]36040PL201PhysicsP[4]26040PL201ChemistryP[4]26040Laboratory - IIP[4]26040BL201BiologyP[4]26040GL201ElectronicsP[4]26040H201CommunicationP[4]26040H201CommunicationP[4]26040H201CommunicationP[4]26040H201CommunicationP[4]26040ES201EnvironmentalT[2]111

TUE WED THU

102/201

15

SECOND YEAR Semester- III

Course	Course		Semes	ter- 111				
Nature	Code	Course Title	Course Type (T/P)	Contact Hours /Week (Theory	Credits		Marks	
Core	CB301	Essential	Т	+Tutorials)		CIA	ESE	Tota
		mathematics for Chemistry and Biology		[3 + 1]	4	60	40	100
Core	CB302	Biochemistry-I	Т	[3 + 1]				
Core	CB303	Organic	T	A CONTRACT OF A	4	60	40	100
· · · · ·		Chemistry-I	1	[3 + 1]	4	60	40	100
Core	B301	Cell Biology - I	T	[3 + 1]				10
Core	H301	Creative Hindi	T	[2+0]	4	60	40	10
Core	H302	History and	T		2	60	40	10
17	(IKS Course)	Philosophy of Science		[2+0]	2	60	40	10

0.0

Core	BL 301	Biology Laboratory	Р	[6]	3	60	40	100
Core	GL301	Applied Electronics Laboratory	Р	[4]	2	60	40	100
48		(75 of 240 credits)		Total	25			

*H302 is Indian Knowledge System Course (IKS)

Semester- IV

Course Nature	Course Code	coulde this	Course Type(T/P)	Contact Hours /Week (Theory	Credits		Marks	-
				+Tutorials)		CIA	ESE	Total
Core	PCB401	Physical and Chemical Kinetics	Т	[3+1]	4	60	40	100
Core	CB401	Introductory Spectroscopy (UV-vis, fluorescence, IR, Raman, NMR)	Т	[3 + 1]	4	60	40	100
Core	B 401	Cell Biology – II	Т	[2+1]	3	60	40	100
Core	B 402	Biochemistry - II	Т	[2+1]	3	60	40	100
Core	G401	Statistical Techniques and Applications	Т	[3+1]	4	60	40	100
Core	BL 401	Biology Laboratory	Р	[6]	3	60	40	100
Core	GL 401	Computational Laboratory and Numerical Methods	Р	[4]	2	60	40	100
Core	H401	Communication Skills Lab	Р	[4]	2	60	40	100
and and		(100 of 240 credits)		Total	25			

THIRD YEAR Semester- V

Course Nature	Course Code	Course Title	Course Type (T/P)	Contact Hours /Week (Theory	Credits		Marks	
2 to				+Tutorials)	1 1	CIA	ESE	Total
Core	CB501	Analytical Chemistry	T,	[3 + 1]	4	60	40	100

S s.

10.

05/2024 10

Core	B 501	Genetics	т	[3+1]	4	60	40	100
Core	B 502	Molecular Biology	T	[3+2]	5	60	40	100
Core	B 503	Biodiversity plants/animals	Т	[3+2]	5	60.	40	100
Core	H501	Scientific Writing in Hindi	Т	[2]	2	60	40	100
Core	BL501	Biology Laboratory	Р	[10]	5	60	40	100
		(125 of 240 credits)		Total	25			
		Skill E	nhancement	/Value Added Co)UITSO			
	SEL501	English Language for Competence Skills	P	[4]	2	60	40	100

Semester- VI

Course	Course	C. Tru		ster- VI				
Nature		Course Title	Course Type (T/P)	Contact Hours /Week (Theory	Credits		Marks	
				+Tutorials)		CIA	ESE	Tota
Core	CB601	Biophysical Chemistry	Т	[3 + 1]	4	60	40	100
Core	B 601	Immunology	Т	[2+1]	3	60	40	100
Core	B 602	Animal Physiology	Т	[2+1]	3	No.923	0.572	
Core	B 603	Plant Physiology	T		-	60	40	100
Core	B 604	Microbiology	T	[3+1]	4	60	40	100
Core	H601			[3+1]	4	60	40	100
Cole	1001	Ethics in Science and IPR	Т	[2+0]	2	60	40	100
Core	H602	Scientific Writing in English	Т	[2]	2	60	40	100
Core	BL601	Biology Laboratory	Р	[6]	3	60	40	100
		(150 of 240 credits)		Total	25			
		Skill Er	hancement/	Value Added Co				
	SEL-601	Pratiyogi Parikshao	P	[4]	2	(0	1	
		ke liye Hindi Bhasha	::: 7 18	ei	4	60	40	100

m re c per

14

湾

-

i i guard and

FOURTH YEAR Semester- VII

Course	Course Code	Course Title	Course	Contact Hours	Credits		Marks	
Nature			Туре (Т/Р)	/Week (Theory +Tutorials)		CIA	ESE	Total
Core	B 701	Evolutionary Biology	Т	[3+1]	4	60	40	100
Core	B 702	Immunology – II	Т	[3+1]	4	60	40	100
Core	B 703	Developmental Biology	Т	[3 + 1]	4	60	40	100
Core	B 704	Imaging Technology in Biological Research	Т	[3 + 1]	4	60	40	100
Core	BPGD 701	Biology PO Dissertation/Project	Р	[8]	4	60	40	100
Core	BL 701	Advanced Biology Laboratory-I	Р	[10]	5	60	40	100
		(175 of 240 credits)		Total	25			
-		Skill Enh	ancement/	Value Added Co	urse			
	SEL-701	Linux Operating System	P	[4]	2	60	40	100

Semester- VIII

Course Nature	Course Code	Course Title	Course Type	Contact Hours /Week (Theory	Credits		Marks	
			(T/P)	+Tutorials)		CIA	ESE	Total
Core	B 801	Virology	Т	[3+1]	4	60	40	100
Core	B 802	Biotechnology - I	Т	[3+1]	4	60	40	100
Core	B 803	Bioinformatics	Т	[3+1]	4	60	40	100
Core	B 804	Biotechnology - II	Т	[3+1]	4	60	40	100
Core	BL 801	Advanced Biology Laboratory-II	Р	[10]	5	60	40	100
Core	BPGD801	Biology PG Dissertation / Project	Р	[8]	4	60	40	100
		(200 of 240 credits)		Total	25			
		Skill Enh	ancement	/Value Added C	ourse			
	SEBL-801	Statistical Tools in Biological Research	P	[4]	2	60	40	100

44 48 4

D.

٥/

1

FIFTH YEAR

Course	Course	Course Title		ster- IX	Credits		Marks	
Nature	Code	Course Thie	Course Type (T/P)	Contact Hours /Week (Theory +Tutorials)	Creates	CIA	ESE	Total
Core	BPGD901	Biology PG Dissertation/ Project	Р	-	20	•	400	400
		(220 of 240 Credits)		Total				

Course	Course	Course Title	Course	ester- X Contact Hours	Credits		Marks	
Nature	Code		Type(T/P)	/Week (Theory +Tutorials)		CIA	ESE	Total
Elective	BE1	Proteomics and Genomics	T	[4+1]	5	60	40	100
Elective	BE2	Nanobiotechnology	Т	[4+1]	5	60	40	100
Elective	BE3	Plant Genetic Engineering	Т	[4+1]	5	60	40	100
Elective	BE4	Plant-Microbe Interaction	Т	[4 + 1]	5	60	40	100
Elective	BE5	Neurobiology	Т	[4 + 1]	5	(0		
Elective	BE6	Plants for Human Welfare	T	[4+1]	5	60 60	40 40	100
Elective	BE7	Animal Tissue Culture	Т	[4 + 1]	5	60	40	100
Elective	BE8	Earth Science and Energy & Envi- ronmental Sciences	Т	[4 + 1]	5	60	40	100
		(240 of 240 credits)		Total	20			

*Four Subjects will be offered according to the availability of instructors and minimum number of interested students taking a course. The chosen four subjects will have codes BE1001, BE1002, BE1003 and BE1004.

Skill Enhancement/ Value Added Courses: (Offered to the students of CBS)

The candidates who have joined the 5-Year Integrated M.Sc. Program in Center for Basic Sciences shall undergo Skill Enhancement Course /Value Added Course (only qualifying in nature).

nester	Course	Course Title	Course	Hrs/	Credits		Mark	,
	Code		Туре (Т/Р)	Week		CIA	ESE	Total
V	SEL501	English Language for Competence Skills	Р	4	2	60	40	100
VI	SEL601	Pratiyogi Parikshao ke liye Hindi Bhasha	Р	4	2	60	40	100
VII	SEL701	Linux Operating System	Р	4	2	60	40	100
ЛЦ	SEBL801 · (Only for Biology stream)	Statistical Tools in Biological Research	Р	4	2	60	40	100

Indian Knowledge System Course:

(Offered to the students of CBS)

The candidates who have joined the 5-Year Integrated M.Sc. Program in Center for Basic Sciences shall undergo Indian Knowledge System course which is a core course.

	Semester	Course	Course Title	Course	Hrs/	Credits		Marks	8
2		Code		Туре (Т/Р)	Week		CIA	ESE	Total
-	III	H302	History and Philosophy of Science	Т	[2+0]	2	60	40	100

ostazy 0

4

 Programme Articulation Matrix

 Following matrix depicts the correlation between all the courses of the programme and Programme Outcomes

Course	e and	1 Pro	gran	ime	Out	POs	s	the state	de valent	CONVER.	THE R. L.	ALC: NO	Selles.	PSO	1	-
Code	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
B-101	1	V	V	×	1	√	1	1	×	V	1	V	V	V	\checkmark	~
C-101	1	V	V	×	1	V	1	1	×	V	V	V	V	V	V	V
MB-101	1	V	V	Ĵ	1	V	1	V	×	V	Ń	1	V	\checkmark	1	1
P101	1	V	1	1	1	V	1	V	×	1	\checkmark	1	\checkmark	V	1	V
G101	1	\checkmark	1	1	1	V	1	1	×	V	\checkmark	\checkmark	\checkmark	V	V	V
H101	1	\checkmark	×	×	1	\checkmark	1	1	×	\checkmark	V	\checkmark	\checkmark	1	V	1
ES101	V	\checkmark	$\overline{\mathbf{v}}$	×	1	\checkmark	1	\checkmark	×	\checkmark	\checkmark	V	\checkmark	V	1	V
BL101	V	\checkmark	\checkmark	×	V	\checkmark	V	\checkmark	\checkmark	\checkmark	V	\checkmark	V	V	1	1
PL101	1	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	V	V	1	V
CL101	\checkmark	\checkmark	\checkmark	1	V	\checkmark	V	\checkmark	1	\checkmark	\checkmark	V	1 1 Carrow	V	1	1
GL101	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark	V	\checkmark	V	1	\checkmark	V	-	1	V	V
B201	1	\checkmark	\checkmark	×	\checkmark	1	V	\checkmark	×	\checkmark	\checkmark	1		\checkmark	V	1
C-201		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	1	\checkmark	1	S	1	V	1
MB201	\checkmark	$ $ \checkmark	\checkmark	1	\checkmark	$ $ \checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	-	1	V	1
P201	$ $ \checkmark	$ $ \checkmark	\checkmark	1	\checkmark		\checkmark	×	\checkmark	\checkmark	1	V		V	1	V
G201	1	$ $ \checkmark	\checkmark	√	\checkmark		\checkmark	\checkmark	V	\checkmark	1	N		1	V	V
H201	1		\checkmark	×	\checkmark	1	\checkmark	\checkmark	×	1	1	N		1	1	1
ES201	\checkmark		\checkmark	\checkmark		V	$ $ \checkmark	V	\checkmark		\checkmark	1	610	1	1	1
BL201	\checkmark	$ $ \checkmark	\checkmark	×		\checkmark	\checkmark	V	×	V	\checkmark	1	1	1	$ $ \checkmark	1
PL201	V	V	\checkmark	1	\checkmark	V	\checkmark	V	1	1	\checkmark	1	11	1	1	V
CL201	$ $ \checkmark	\checkmark	\checkmark	$ $ \checkmark	\checkmark	V	1	\checkmark	1	V	1	1	11	V	V	1
GL201	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$ $ \checkmark	$ $ \checkmark	V		1	11	V	1	1
CB301	V	\checkmark	\checkmark	×	\checkmark	V	1	$ $ \checkmark	×	$ $ \checkmark	1	1	11	V	V	V
B302	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	$ $ \checkmark	\checkmark	×	\checkmark	V		11	\checkmark	V	V
B303	\checkmark	\checkmark	\checkmark	√	\checkmark	V		×	V		V	-	VV	1	N	V
301	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	$ $ \checkmark	×	1	V	-	VV	V		IV
301		\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark	\checkmark	V	1	V		VV	V	1	IV
302	\checkmark		\checkmark	\checkmark	\checkmark	V	V	1	V	N	V		VV	V	1	
L301			\checkmark	×	\checkmark	V	V	V	×	N	V		11		1	
L301	$\overline{\mathbf{v}}$		\checkmark	\checkmark	\checkmark	1	\checkmark	V	1	N	1		11			
CB401	V	V	\checkmark	1	V	1	V	V	V	1			VV	-		

24

B. S. N.

12/01/51 ny

CB401	(Service)	1					,									
B401	Pracks 1	V	_		VV	_	VV	1	_	1			11	V	1	V
B402	and the second se	1	_		× V	_	VV	1	/ ×	1			VV	V	V	V
G401		1	_		× 1	_	VV	1	/ ×	1	√		11	V	V	V
BL401	and the second se		8	_	$\sqrt{}$	-	VV	1					VV	V	1	V
GL401			1	1	VV	_	VV	Y					VV	V	\checkmark	V
H401	and the second second	11		-	$\sqrt{}$	-	VV	V		_		1	$\sqrt{}$	V	\checkmark	V
CB501	1			_	$\langle \rangle$	-	VV	V		V		1	$\sqrt{}$	V	V	V
B501	1		$\overline{}$	-	$\langle \overline{\langle} \rangle$	-	1 1	V		V	10.53	1	$\sqrt{}$	V	V	V
B502		1	1	1		1		V	-	1	0.0. 880	2	$\sqrt{1}$	\checkmark	\checkmark	V
B503	V		1			1		V	V	V	\checkmark	1		\checkmark	\checkmark	V
H501	V			1		1		V	V	\checkmark	V	1		$ $ \checkmark	\checkmark	V
BL501			× √	×	1	N		V	V	V	C.	1		\checkmark	\checkmark	V
CB601	V		1	×		N	1	V	V	V	V	V	$$	$ $ \checkmark	\checkmark	
B601	V	V	$\overline{}$	1		V	-	V	\checkmark	V	V	V		\checkmark	√	$$
B602	1	\neg	V	×		V		$$	×	V	V	V	10	\checkmark	\checkmark	$ $ \checkmark
B603	V	$\overline{1}$	V	×	V	V	V	V	×	V	V	V		\checkmark	\checkmark	\checkmark
B604	1	1	V	× √	V	V	V	\checkmark	×	1	V	V	\checkmark	\checkmark	\checkmark	\checkmark
H601	$\overline{1}$	V	V		$\sqrt{1}$	V	V	V	×	V	V	V	-	V	\checkmark	\checkmark
H602	1	V	1 v	× √	V	-	V	V	$$	V	1	1		V	\checkmark	$ $ \checkmark
BL601	V	V	1 v	V	V	V	V	V	V	V	1	1	V	V	V	\checkmark
3701	1	1	V	V	V	1	-	1	V	V	1	1	V	V	1	\checkmark
3702	V	V	1	V	$\sqrt{1}$	$\frac{}{}$	V	1	V	V	1	1	V	V	1	
3703	1	V	V	V			\checkmark	1	\checkmark	1	V	1	V	V	1	1
704	V	V	V	V	V	1	V	1	1	1	V	1	V	V	1	1
L701	V	1	V			1	1	1	V	1	1	V	V	1	1	1
PGD701	Ì	V	-	V	1	V	V	V	1	1	V	V	\checkmark	\checkmark	\checkmark	\checkmark
801	V	$\sqrt{1}$	V		V	V	V	V	1	V	\checkmark	1	V	\checkmark	\checkmark	1
801			V	1	1	V	V	V	V	V	V	1	1.	$ $ \vee	\checkmark	1
Second Second Second Second	V	V	1	V	1	V	1	1	V	V	V	1	V	\checkmark	\checkmark	1
803	V	V	V	V	V	V	1	V	V	V	1	1	1	\checkmark	\checkmark	1
804		\checkmark		V	V	V	V	V	V	1	V	1	1	$ $ \checkmark	\checkmark	1
.801	V	V	V	V	V	V	V	V	1	1	\checkmark	\checkmark	\checkmark	\checkmark	V	1
GD801	V	V	1	V	1	1	\checkmark	\checkmark	1							
GD901		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark	\checkmark	1	1
	\checkmark	\checkmark			\checkmark		\checkmark	V	\checkmark	1	\checkmark	1	1	\checkmark	1	1
2						1		V	V	1				\checkmark	$\overline{\mathbf{v}}$	1

			1-7-	1		· · · ·	<u> </u>		1-1		J	TV	∇	\checkmark	V	V
BE3	V	V	V	×	V	V	V	V	V	V	Y	1	i	V	V	V
BE4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark	V	\checkmark	V	<u>۷</u>	V	N.	+	j	J
BE5	1	V	$\overline{\mathbf{A}}$	V	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	\checkmark	V	V	\checkmark	\checkmark	V	V	V		
BE6			\checkmark	\checkmark	V	$\overline{\mathbf{v}}$	\checkmark	V	\checkmark	V	\checkmark	V	V	V	N	V
BE7	J	V	V	×	V	V	V	V	\checkmark	V	\checkmark	\checkmark	\checkmark	V	V	V
BE8	J	1	V	x	J	J	1	V	V	V	V	V	\checkmark	$ $ \checkmark	\checkmark	V
DE0	73	73	69	50	73	73	73	73	54	73	73	73	73	73	73	73
SEL501	×	×	×	×	7	7	7	1	1	V	1	V	V	V	1	V
SEL601	(1.H).			-	1	1	1	7	1	1	V	V	V	V	1	V
SEL701	×	×	×	×					1	7	1	7	V	V	V	1
And the second s	N.	V	N	Y	V	V	٧	V	V	V				1	1	1
SEBL801	1	1		×	\checkmark	\checkmark	V	1		V	V	V	V	N	Y	1

Semester-wise Syllabus

Integrated M.Sc. Semester - I

	Integrated Mis	- Schloter - I					
Program	Subject	Year	Semester				
Integrated M.Sc.	Biology	1	I				
Course Code	Cou	se Title	Course Type				
B-101	BIO	BIOLOGY -I					
Credit		Hours Per Week (L-T-	P)				
	L	Т	P				
3	2	1	0				
Maximum Marks		CIA	ESE				
100		60	40				

Learning Objective (LO):

The aim of this paper is to provide students with a comprehensive understanding of basic biology, the evolution of life, taxonomy and classification, cell biology, cellular systems, and tissue systems. It enables the students to identify living organisms and ecosystems characteristics and basic needs. It explains the processes of growth and development in individuals and populations.

Course Outcomes (CO):

CO	Expected Course Outcomes	
No.	At the end of the course, the students will be able to:	CL
1.	With this introductory paper students will be able to comprehend general biological processes which are essential for students of all the streams Physics, Chemistry or mathematics.	U
2.	Theories of origin of life, evolution and process of development on earth.	
3.	Identification of the levels of biological organization	U
4.	Cellular mechanism which will further improve the understanding of processes of living beings.	E
5.	Physiology of different organ systems of the human body.	U
		U

5.24

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-create).

POCO	13 51 51	1. 1. 1. 1.	STATES.	No.	P	Os	191	L'OR THE	101	S. S. Martine	20	PSC	1	Station of	Jan 19	_
CO1		2	3	4	5	6	7	8	9	10	11	1	, b	h	TT	L
02	3	2	1	-		2	2	2	-	3	3	13	6	6	4	5
Contraction of the second	3	2	1	-	-	2	2	2	-	3	h	12	-	-	2	-10
03	3	3	3	2	2	3	3	3	-	2	h	6	-6-		2	B
04	3	3	3	2	2	1	1	2	-	3	-	P	_ <u>p</u>	<u> </u>	3	3
05	3	3	2	2		-	2		-	3	<u>в</u>	3	3	3	3	3
"3"-	Strong.	'2"-Mod	-	-		1	2	1	-	3	р	2	1	3	3	3

CO-PO/PSO Mapping for the course:

w;"-"No Correlation

Detailed Syllabus: B 101 Biology I (Introductory Biology-I)

Unit No.	Detailed Syllabus: B 101 Biology I (Introductory Biology-I) Topics	No. of	CO
I	Life: History and origin of life, Concepts of biological evolution, Darwinism,	Lectures	No.
	Sumarckish, hatural selection, speciation	8	1
п	Classification of living things: Classification and domains of life, overview of taxonomy of plants, animals and microorganisms.	7	2
Ш	Cell Biology: Discovery of cell, cell theory, classification of cell types, Prokaryotes and Eukaryotes, cell wall, cell membrane, cytoplasm, structure and functions of cell organelles.	10	3
IV	Cell Division and System Development: cell cycle, mitosis, meiosis, and mechanism of development (stem cells), formation of tissues, cell-cell interactions, respiration.	10	4
v	Morphology and Anatomy of flowering plants, photosynthesis. Major Human Body Systems: Digestive, Circulatory, Lymphatic, Respiratory system.	10	5

BOOKS SUGGESTED:

S.No.	Author	Book
1	Neil A Campbell and JB Reece (2007)	
2	NA Campbell, JB Reece, MR Taylor and EJ Simon (2008)	Biology with Mastering Biology (8th Edition) Biology: Concepts & Connections with biology (6th Edition)
3	Charles Darwin (2008)	Dation
4	B Alberts, D Bray, K Hopkin and AD Johnson (2009)	On the Origin of Species Essential Cell Biology
5	Rene Fester Kratz (2009)	Malaula
6	VID 1 (2000)	Molecular and Cell Biology For Dummies Darwin's Black Box: The Biochemical Challenge to Evolution
7	SD Contra (2000)	Evolution Biology: A Self-Teaching Guide, (2nd Edition)

is.ori

	Integrated M.	Sc. Semester - 1	100				
Program	Subject	Year	Semester				
Integrated M.Sc.	Biology	1	l				
Course Code	Cou	Course Type					
ES-101	Environ	Environmental Studies					
Credit		Hours Per Week (L-T-P)					
	L. Santa and	T	Р				
2	2	2	0				
Maximum Marks		CIA	ESE				
100		60					

Learning Objective (LO):

The objective of this course is to aware students about the ecology and environment. An environmental study is all about learning the way we should live and how we can develop sustainable strategies to protect the environment. It helps individuals to develop an understanding of living and physical environment and how to resolve challenging environmental issues affecting the nature.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL		
1.	Concepts of ecology and environment which are important for the student of any stream	Con al friday		
2.	Basic concept of renewable and non-renewable energy resources	U		
3.	Understanding of hierarchy of food on different ecosystem	An		
4.	Types and characteristics of major ecosystems	E		
5.	Environmental issues and measures to deal with them.	An		
	Owns' role as a responsible citizen.			
L: Cos	Initive Levels (D. Roman has 1) 11 - 1			

vels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

roco	the states	a Karalan-	2 - 25		P	os	at pas	181.00	1 Carton	1000	1.1.1.1.1.1.1					
	1	2	3	4	5	6	17	18	1 0	1 10	1	-2002	62.5 32	PSC	STATES IN	110
COI	3	3	2	1	-	-	12	0	9	10	n	1	2	3	4	5
CO2	3	1	12	-				3	1	3	3	3	2	3	3	2
CO3	2			1-		1	3	3	1	3	3	3	2	1		-
	3	3	2	-	1	2	3	3		3	3	12			3	3
CO4	3	3	2	-	1	2	3	1	-	1	-	-	-	<u> </u>	3	3
COS	3	3	3	1	5	12	1	1	-	3		1	1	2	3	3
"3"-	Strong."	'2"-Mod	arata			-	P	13	•	3	β	3	1	2	1	-
-	ouong,	2 -Mod	crate;	1	Low;"	-"NoC	orrela	tion				-	_	-	3	5

-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Unit	Detailed Syllabus: ES 101 Environmental Studies		
No.	Topics	No. of Lectures	CO No.
	THE MULTI DISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES	3	1
	Definition, scope and importance		
II	Need for publish awareness.		
••	Natural Resources Renewable and non-renewable resources:	8	2
	Natural resources and associated problems.		
	a. Forest resources: use and over - exploitation, deforestation, case		
	studies, timber extraction, Mining, dams and their effects on forests and tribal people.		
	b. Water resources: use and over-utilization of surface and ground water, floods, drought, Conflicts over water, dams benefits and problems.		6
	c. Mineral resources: use and exploitation, environmental effects of		
	extracting and using Mineral resources, case studies.		
	d. Food resources: World food problems, changes caused by agriculture		
	and overgrazing, Effects of modern agriculture, fertilizer -pesticide		
	problems, water logging, salinity Case studies.		
	e. Energy resources: Growing energy needs, renewable and non-		
	renewable energy sources Use of alternate energy sources, case studies		
	t. Land resources: land as a resources, land degradation, man induced		
	landslides, soil erosion& desertification.		
	g. Role of an individual in conservation of natural resources.		
***	h. Equitable use of resources for sustainable life -styles.		
ш	Concept of an ecosystems.	6	3
	Structure and function of an ecosystem.		
	 Producers, consumers and decomposers. 		
	• Energy flow in the ecosystem.		
	Ecological succession.		
	Food chains, food webs and ecological pyramids		
IV	Introduction ; types ,characteristic features , structure and function of the	5	4
	Following Ecosystem:		
	• Forest ecosystem		
	Grassland ecosystem		
	Desert ecosystem		
	Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries)		
v	SOCIAL ISSUES AND THE ENVIRONMENT	8	5
	Environment Protection Act.		
	Air (prevention and control of pollution) Act.		
	Wildlife protection Act.		
	Forest conservation Act.		
	 Issues involved in enforcement of environmental legislation. 	1	
	Public awareness.		
	Value Education		
	HIV/ADIS		
	• Women and child welfare.		
	Role of information technology in Environment and Human Health.		
A	Case studies.		
The second	And Alissel to or M Alerd 5/2	5	Sha

S. No.	Author	Title
1.	Agarwal K.C.	Environmental Biology 2001
2.	Bharucha Erach	The Biodiversity of India
3.	Bruinner R.C.	Hazardous Waste Incineration, 1989
4.	Bharucha E.	Textbook for Environmental Studies for undergraduate Courses
5.	Begon M., Town send C.R., Harper J.L.	Ecology From Individuals to Ecosystems

Integrated M.Sc. Semester - I

Program			Semester				
	Subject	Year	Demester				
Integrated M.Sc.	Biology	1	1				
Course Code	Cours	Course Type					
BL-101		Biology Laboratory – I					
Credit	Hours Per Week (L-T-P)						
and the second	Lateral L	r	P				
2	-	-	4				
Maximum Marks		CIA	ESE				
100		60					

Learning Objective (LO):

Lab practical are highly visual, and may involve things like identifying a structure through a microscope, preparation of slides. Biological Science practicals will develop thinking and reasoning skills. It will gratify intellectual instincts and will make students aware of our surroundings and ourselves.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1.	Develop the ability to identify the unique characters of organisms, classify them, and understand the concept of evolution and phylogenetic tree	Ų
2.	Expertise in Microscopy and Micrometry	An
3.	Learn to prepare slide, staining of specimen and study of morphological characteristics. Differentiating dead v/s live cells using differential staining	E
4.	Acquire skills of section cutting stem, root, leaf and flower. Develop understanding of types, shapes and arrangements of leaves.	An
5.	Develop a deeper understanding of types of human blood cell by differential staining, and count the number of cells using Haemocytometer.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

Contraction of the		CALCEL SALES		Po	S					5.56533	Rhible	a standard	DCC
	2	3	4	5	6	7	8	9	10	11	1	12	PSO
3	3	3	2	2	1	3	3	3	3	3	2	2	3 4 5
3	3	3	2	2	1	3	3	3	3	2	2	2	3 3 3
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 3 3 3	1 2 3 3 3 3 3 3 3	1 2 3 4 3 3 3 2 3 3 3 2 3 3 3 2	1		1						

100

1

CO3 CO4	3	3	3	2	2	1	3	13	12	12		10	-	-		
CO5	3	3	2	1	1	6	1	2	-		3	3	2	3	3	3
and a second	3	3	2	1	1	h		3	1	3	3	3	1	2	3	3
"3"-S	trong;"2"	-Moder	ate;"	-L	ow:"-"	"No C	orrala	3	1	3	3	3	1	2	3	3

Strong;"2"-Moderate;"1"-Low;"-"No Correlation

S.	Detailed Syllabus: BL101 Biology Laboratory – I Experiment		
No.		No. of	CO
I	Introduction to Biology laboratory: Taxonomy, Methods of	Lab	No.
	Classification, Dichotomous key, Hierarchical Classification, Phylogenetic Classification	5	1
II	Introduction to Light Microscopy Micrometry: Measuring size of a microscopic specimen.	5	2
III	Staining and Observing: human cheek cells plant cells. Study morphological characteristics of <i>S. cerevesiae</i> , differentiating dead v/s live cells	6	3
IV	Plant anatomy Relationship between plant anatomy and habitat. Transverse section of dicot & monocot stem, root, leaf and flower. Observing and understanding types shapes and patterns of leaves.	8	4
v	Staining human blood cells: To observe human blood cell types by differential staining, Haemocytometer.	6	5

Integrated M.Sc. Semester - II

Program	Subject	Year	0		
ntegrated M.Sc.	Biology	Automatic de la constantion de la const	Semeste		
	Biology	1	II		
Course Code	Cou	rse Title	Course Type		
B-201	Biology -II [Intr	roductory Biology-II]	Core		
Credit	The second	Hours Per Week(L-T-P)			
	L	T	Р		
3	2	1	0		
Maximum Marks	A STREET STREET	CIA	ECD		
100	and a second	the second s	ESE		
		60	40		

Learning Objective (LO):

It will provide insight of cell structure, functioning and metabolism. Progress in medicine, agriculture, biotechnology, and various other biological domains has led to enhancements in the quality of life.

10. N.M

Cours	se Outcomes (CO):	
CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Students will be able to have a base knowledge about cell structure, function and role of biological molecules in regulating the basic mechanism of a cell.	0
2.	Understanding the concept of genetic material and gene regulation	U
3.	Students have the knowledge about structure and function of essential and non-essential proteins	E
4.	Know the process of Cell Signalling.	An
5.	Fundamentals of biotechnology and recombinant DNA technology.	C

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	(e		14 2 2 1	19-2-22	P	Os	and the second	1. A.			- lice	1	14699.0	PSC		
	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	3	2	2	3	3	2	-	3	3	3	3	2	2	3
CO2	3	3	3	2	2	3	3	2	-	3	3	3	3	2	2	3
CO3	3	3	3	2	2	3	3	2	-	3	3	3	3	2	2	3
CO4	3	3	3	1	1	3	2	3	-	3	3	3	3	2	3	3
CO5	3	3	3	3	2	3	3	2	3	3	3	3	3	2	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 201 Biology II (Introductory Biology-II)

Unit No.	Topics	No. of Lectures	CO No.
I	Nucleic acids: DNA as the carrier of genetic information, Building blocks- nucleosides, nucleotides, DNA andRNA structure, types and function, chromatin structure, genes, repetitive DNA sequences.	8	1
п	Gene expression: Overview, genes regulatory elements, transcription mechanism in prokaryotes and eukaryotes (a comparison), Reverse transcription, genetic code.	7	2
III	Protein Structure and Function: Building blocks- amino acids, peptides, secondary structure, three dimensional structure, membrane proteins, miscellaneous proteins, enzymes.	10	3
IV	Cell Signaling: Overview, signaling via hydrophobic molecules, signaling via ion channels, Signaling via G-protein coupled receptors, signaling via cell surface enzymes, intracellular signalling.	10	4
v	Biotechnology:DNA cloning, Uses of recombinant DNA technology, Polymerase chain reaction (PCR), Production of recombinant proteins and SDS-PAGE. Classification of living things: Classification and domains of life, overview of taxonomy of plants, animals and microorganisms.	10	5

BOOKS SUGGESTED:

Sr.no	Autho	r and see all the second second second		Book		
1.	B Albe	rts, A Johnson, J Lewis	, and M Raff	Molecular Biology	of the Cell	
AS IS		At 10. 5. 24	600.51 19.51	~ Bria	- way	

2	
2. J D. Watson, T A.Baker, S P. Bell, & A Gann	Molecular Biology of the Gene (6th Edition)
A Form witson and Tim Hunt (2007)	Molecular Biology of the Cell:The Problems
4. Benjamin Lewin (2007)	Genes IX (Lewin, Genes XI)

Integrated M.Sc. Semester - II

Program	Integrated M.Sc.	Semester – II	
Program	Subject	Year	Semester
Integrated M.Sc.	Biology	1	II
Course Code	Course	Title	Course Type
ES-201	Environmen	tal Studies-II	Additional
Credit	H	ours Per Week (L-T-	
	L	T	P
2	2	0	0
Maximum Marks	C	A	ESE
100	6	0	40

Learning Objective (LO):

Environmental studies foster awareness about biodiversity and both renewable and nonrenewable resources in a particular region. This involves assessing the available resources, their utilization patterns and the need to maintain a balance for future generations.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Students will realize that people are dependent on intact habitats that sustain the various organisms we need to produce food, medicines, clothing, and other materials. Students will learn about certain species roles in an ecosystem	E
2.	To describe the main pollutants and their effects on human health. To develop an activity where the student puts into practice the knowledge acquired.	An
3.	Understand waste management vs. waste reduction. Define the concept of integrated waste management	С
1.	Define 'population growth' list causes and issues related to population growth. Analyze population changes in specific countries.	Ap
5.	Evaluate all the environmental factors considering with at all points such as technical, social, legal and economical aspect.	E
CL	Cognitive Levels (P-Remember: II Understanding A.	

Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	No.	POs												PSO					
	1 Section	2	3	4	5	6	7	8	9	10	11	1	2	3	4	K			
CO1	3	3	3	3	3	3	2	3	2	3	3	3	3	6	2	h			
CO2	3	3	3	3	3	3	2	3	2	3	3	13	-	6	2	5			
CO3	3	3	3	3	3	3	2	3	2	3	2	12	-	- <u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	2	<u>b</u>			
0			1.54	-	15		-	5	4	5	P	P	p	2	2	β			

													1 1 3
CO4	3	3	3	2	2	3	2	3	2	3	3 3		1 2 2
COS	3	3	3	1	2	3	2	1	2	3	3 3	1	
and the second design of the s	and the survey of the local division of the		No. of Concession, Name		the state of the s	from strengthere and	the second second	and the second division of the second divisio			and the second se		

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

	Detailed Syllabus: ES 201 Environmental Studies-II No. of CO									
Unit	Topics	Lectures	No.							
<u>No.</u> 1	Biodiversity and its Conservation: Introduction- Definition: genetics, species and ecosystem diversity. Bio geographical classification of India. Value of biodiversity: consumptive use productive use, social, ethical, aesthetical and option value. Biodiversity at global, National and local levels. India as mega- diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in situ and ex-situ conservation of biodiversity.	6	1							
11	Environmental pollution. Definition Causes, effects and control measures of a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Nuclear hazards.	6	2							
111	Solid waste management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies Disaster management: floods, earthquake, cyclone and landslides.	6	3							
IV	Human population and the Environment: Population growth, variation among nation. Population explosion- Family welfare programme. Environment and human health. Human Rights.	6	4							
v	Social Issues and the Environment: From unsustainable to Sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people, its problems and concerns. Case studies. Environment ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation. Consumerism and waste products.	6	5							

BOOKS SUGGESTED:

S. N.	Author	Title
1.	Agarwal K.C.	Environmental Biology 2001
2.	Bharucha Erach	The Biodiversity of India
3.	Bruinner R.C.	Hazardous Waste Incineration, 1989
4.	Bharucha E.	Textbook for Environmental Studies for undergraduate courses
5.	Begon M., Town C.R., Harper J.L.	Ecology From Individuals to Ecosystems

A-0.5.24

Con Stin

9

Learning Objective (LO):

Students will have the basic instrumentation used in biology laboratory. They will be able to Design and critically assess the scientific investigations. It will also Demonstrate critical thinking skills.

Course Outcomes (CO):

At the end of the course, the students will be able to:	CL
Ultraviolet And Visible (Uv-Vis) Absorption, Laminar air flow system, Centrifuges, Spectrophotometer, Sonicator, PCR and Real-time PCR, Gel Documentation system and various Incubators	An
whethere in verifying key meones.	AP
Able to observe Microscopic cells and even measure their size and count the number. Observe the dividing cells and differentiate between the cells using variance of the number.	AP
primary characterization.	AP
Gain practical experience of extraction, estimation and separation of major biomolecules like Carbohydrate, protein content, lipid.	AP
	Gain the proficiency in a wide range of experimental instruments and methods in biology including Micro-Pipettes, Tissue Homogenizer, Electrophoresis apparatus, Colorimeter & Ultraviolet And Visible (Uv-Vis) Absorption, Laminar air flow system, Centrifuges, Spectrophotometer, Sonicator, PCR and Real-time PCR, Gel Documentation system and various Incubators Develop a deep understanding of the principle of instruments, and also gaining practical experience in verifying key theories. Able to observe Microscopic cells and even measure their size and count the number. Observe the dividing cells and differentiate between the cells using various staining methods. Learn to prepare different kinds of growth media to isolate various microbes, and their primary characterization.

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO CO		POs											PS				
	1	2	3	4	5	6	7	8	9	10	11	1	2	0	A	15	
CO1	3	3	3	3	2	2	3	1	3	3	3	3	3	3	3	3	
CO2	3	3	3	2	2	1	2	1	3	3	3	3	3	3	2	2	
CO3	3	3	3	2	2	1	3	1	3	3	3	3	2	1	- 3	2	
CO4	3	3	3	-	2	1	3	1	3	3	3	2		2	-	5	
CO5	3	3	3	-	2	1	3	$\frac{1}{1}$	3	3	3	3	3	2	2	2	

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

S. No.	Detailed Syllabus: BL201 Biology Laboratory – II Experiment	No. of Lab	CO No.
I	Use and maintenance of Instruments: Micro-Pipettes, Tissue Homogenizer, Electrophoresis apparatus, Colorimeter & Ultraviolet And Visible (Uv-Vis) Absorption, Laminar air flow system, Centrifuges, Spectrophotometer, Sonicator, PCR and Real-time PCR, Gel Documentation system and various Incubators	5	1
II	Understand the principle and use of Centrifugation, colorimeter and spectrophotometer,	4	2
III	Microscopic observation Bacterial cell counting using Neubauer chamber, mitosis in onion root tips, Gram Staining: To differentiate bacteria cells by Gram staining.	8	3
IV	Introduction to Research Laboratory: Different kinds of microbial plates, liquid growth media for microbes, verify Beer-Lamberts law.	6	4
V	Extraction & estimation –Carbohydrate, protein content, lipid Separation of biomolecules using: Adsorption chromatography; Partitioning of indicators in various solvent systems, Paper chromatography, Reverse phase thin layer chromatography (PRTLC)	7	5

Integrated M.Sc. Semester - III

	Integrated master	Semester III			
Program	Subject	Subject Year Biology 2			
Integrated M.Sc.	Biology				
Course Code	Course	e Title	Course Type		
CB-302	Bioche	mistry-I	Core		
Credit	H see H	P)			
	L ,	T	P'		
4	3	1	0		
Maximum Marks	ć	IA	ESE		
100		50	40		

Learning Objective (LO):

124

Biochemistry combines biology and chemistry to study living matter. It powers scientific and medical discovery in fields such as pharmaceuticals, forensics and nutrition. With biochemistry, students will study chemical reactions at a molecular level to better understand the world and develop new ways to harness these.

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	To define the pH scale as a measure of acidity of a solution. Tell the origin and the logic of using the pH scale	Ар
2.	Describe the different types of simple and complex carbohydrates. Describe the functions of carbohydrates in the body. Describe the body's carbohydrate needs and how personal choices can lead to health benefits or consequences.	Ар
3.	Recognize the different types of lipids. Distinguish saturated from unsaturated fatty acids. Recognize lipids as important constituents of membranes.	E
•	To understand how enzymes function so that we can better understand the function of our cells and treat diseases.	An
•	Be aware, on a basic level, of how the structure of a protein can influence its interaction with other biomolecules.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	No. No.	POs										132	PSO				
	間1書	2	3	4	5	6	7	8	9	10	11	211	2	3	4	5	
CO1	3	3	3	3	3	3	2	3	2	3	2	3	в	3	2	3	
CO2	3	3	2	2	3	2	2	2	-	2	2	3	в	3	2	3	
CO3	3	3	3	3	3	3	2	3	2	3	2	3	6	3	2	13	
CO4	3	3	2	2	3	2	2	2	-	2	2	3	3	6	2	6	
CO5	3	3	2	2	3	3	2	2	-	3	2	3	R	6	2	3	

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: CB 302 Biochemistry-I

Unit No.	Topics	No. of Lectures	CO No.
I	General biochemistry concepts: The concept of pH, dissociation and ionization of acids and bases, pKa, buffers and buffering mechanism, Henderson Hasselbalch equation, dissociation of amino acids and determination of pKa.	10	1
п	Chemical structure of: carbohydrate, lipids, nucleic acids, proteins. Properties and classification of carbohydrates-monosaccharides, di-, oligo- and polysaccharides, cellulose, lignin, cell wall, Sugar derivatives, Glycosidic Bonds.	10	2
ш	Enzymes: characteristics, nomenclature and classification. Mechanism of enzyme action, enzyme kinetics, enzyme inhibition and regulation.	10	3
IV	Structure and Functions of Lipid: General properties; Classifications: fatty acid, fats, oils, waxes, cholesterol, phospholipids, glycolipid, glycocalyx, Vitamins, Hormones	15	4
v	Protein structure and function: levels of structure of protein, Classification of proteins-globular and fibrous, Protein folding and modification, proteolysis,	15	5

Con M

10

ubiquitin- proteasome.	

BOOKS SUGGESTED:

S.No.	Author	Book
1	D. L. Nelson & M. M. Cox	
2	Stryer L (1995)	Lehninger Principles of Biochemistry
3	Starzak, Michael E.	Biochemistry, 4 th edition, Energy and Entropy equilibrium to stationary states
	J. McMurry (1999)	Fundamentals of General Organic & Biological Chemistry

n	Integrated M.Sc. S	emester – III					
Program	Subject Year		Semester				
Integrated M.Sc.	Biology	2	III				
Course Code	Course	Title	Course Type				
B-301	Cell Bi	ology -I	Core				
Credit	H	Hours Per Week(L-T-P)					
	L	т	P				
4	3	1	0				
Maximum Marks	CI	CIA					
100	6	60					

Learning Objective (LO):

Cell biology aims to understand the structure and physiological function of individual cells, how they interact with their environment, and how large numbers of cells coordinate with each other to form tissues and organisms.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Students will understand the structures and purposes of basic components.	U
2.	Describe how organisms use physical phanomenes, and organelles	- C
3.	Identify organelles in a cell and their function. Students will understand how organisms use them components are used to generate and utilize another in the students will understand how these cellular	E
4.	Describe the significance of different cytoskeletal components in homeostasis and disease as	Ap
5.	Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. ognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).	An

8/25m

CO-PO/PSO	Mapping	for th	c cou	rse:	- 11/2	A Contractor	12041474	100	RIDS	1440	1900	1 20	C. HIC	PSO		
POCO		a states	拉朋	2015	PO	8	Lal	01	0	10	11	213	2	3	4)
ioco	Inter Land	12	3	4	5	6	1	0	- 2	2	2	3	3	3	2	3
CO1	3	3	3	3	3	2	2	-	- 2		2	3	3	3	2	3
CO2	3	3	3	3	2	2	2	1	- 1		2	1	2	3	3	3
CO3	3	3	3	2	3	1	2	1	-	2	2	3	2	1	2	3
CO4	3	3	3	2	3	1	2	1	-	2	2	2	2	12	3	3
004			2	1	3	1	2	1	-	2	2	3	3	4	5	5

 CO5
 3
 3
 3
 1
 3
 1
 2
 1

 "3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

	Detailed Syllabus: B 301 Cell Biology -I No. of CO									
Unit	Topics	No. of Lectures	No.							
No. I	Visualization of cell- History of cellular imaging; principles and applications of light microscopy, Different microscopic techniques for imaging cells-phase	10	1							
П	contrast, confocal, SEM, TEM. Membrane system: The cell membrane and its structure, Models of the biomembrane: Charles Overton's "Lipid Membrane", Lipid monolayer model of Irwing Langmuir, Lipid bilayer model by Gorter and Grendel, Protein-containing lipid bilayer model of Daveson and Danielly, David Robertson's direct observation of the membrane, Fluid Mosaic model of Singer and Nicholson, Constituents and fluidity of plasma membrane, Transport across membrane, Ion channels.	10	2							
ш	Cellular organelles and their functions: Mitochondria: Structure of mitochondria, Different enzymes and their location, Electron transport complexes, ATP synthase, Mitochondrial DNA, Structure of chloroplast, Protein complexes and photosynthetic electron transport chain, DNA of the chloroplast, Structure and functions of the ribosomes, Endoplasmic reticulum, Golgi body, Lysosomes and Nucleus.	15	3							
IV	Cytoskeleton, cilia and flagella: Structure and functions of Microtubules, microfilaments, and Intermediate filaments. Structure and function of tubulin, actin Molecular motors-structure and mechanisms of kinesins and dyneins. Myosin motor protein. Cilia and flagella: structure and functions and mechanism of movement.	15	4							
v	Replication and Maintenance of the genome: DNA replication, DNA damage and repair, DNA rearrangements.	10	5							

BOOKS SUGGESTED:

S. No.	Author	Book
1	D. L. Nelson & M. M. Cox	Lehninger, Principles of Biochemistry
2	Stryer L (1995	Biochemistry,
3	Gerald Karp	Cell and Molecular Biology

5.24

AD . W. Var

V

Deserter	Integrated M.Sc. Subject	Semester – III Year	Semeste			
Program	Subject	Icai	III			
ntegrated M.Sc.	Biology	2	Course Type			
Course Code	Cours	Course Title				
BL-301	Biology I	Biology Laboratory				
Credit	I I I I I I I I I I I I I I I I I I I	·P)				
	L	T	P			
Baltan Antoine Ein 3			6			
		CIA				
Maximum Marks	and the second second	40				
100		60				

Learning Objective (LO):

Study of biological phenomena at cellular and molecular level will be studied to gain knowledge about the principles that govern complex biological systems. It provides the information on concept of biochemical calculation and understands the physiological and biochemical significance of enzymatic reactions. This course will also help the student to know the clinical aspects of various disorders due to deficiency of nutrients.

Course Outcomes (CO):

CO No.	Expected Course Outcomes	CL
Call of the later	At the end of the course, the students will be able to: Deep knowledge of pH, pKa, Buffers, and buffering mechanisms	AP
1		
2	Proficient in Extraction and estimation oftotal free amino acids by ninhydrin reagent, and Estimation of acid value, Iodine number, Saponification value, Peroxide value in unsaturated fats and oils	AP
3	Depth knowledge of the Carbohydrate extraction, estimation and identificationfrom various sources like fruit sample, potato starch, qualitative tests of carbohydrates, identification by anthrone method, thin layer chromatography	AP
4	Apply enzymatic reaction; know the effects of pH, temperature and inhibitors on enzyme kinetics. Develop expertise on enzyme catalyzed reaction	AP
5	Understanding the practical insights into the formation of capsule, cell wall, lipid granules, metachromatic granules, endospores, Cell motility, Subcellular fractionation, western blotting and meiosis.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

Q'er;

CO-PO/PSC	O Mapping	for the course:
PO/ CO		POs

CO	STREET	50 300			De la Participa	03						132		PS	1.	HUGHER
COI	1 marsh	2	3	4	5	6	7	8	9	10	011	1.000	b	0		100 Aug
	3	3	3	2	2	2	12	12	-	10	1111	1 103,0	2	3	4	5
CO2	3	12	1	-		- 1-	_P_	3	2	3	2	3	2	3	2	3
CO3	5	3	3	2	2	2	2	3	2	2	2	3	3	2	2	1
CO4	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	-
	3	3	3	5	b	2	5		-		4	5	2	2	2	2
COS	3	2	-	-			- 3	3	2	3	2	3	3	3	2	3
"3"-Str	-	3	3	2	2	2	2	2	2	2	2	3	2	2	2	12

-Strong; 2"-Moderate;"1"-Low;"-"No Correlation

S.

Detailed Syllabus: BL301 Biology Laboratory

No.	Experiment	No. of Lab	CO No.
I	Biochemical calculation: Concept of pH & Buffers, Hydrogen ion concentration in solution, Inorganic ion concentration in solutions, Inorganic Buffers and Biological fluids, Henderson-Hesselbach equation, Strong acid strong base titration, weak acid strong base titration, Amino acid titration, determine the pka value of the provided amino acid solutions using titration curve. Identify the amino acids using the reference table on the basis of pka values obtained	15	1
II	Extraction and estimation of total free amino acids by ninhydrin reagent Estimation of acid value, Iodine number, Saponification value, Peroxide value in unsaturated fats and oils	10	2
III	Carbohydrate extraction, estimation and identification Extraction of carbohydrates from various sources like fruit sample, potato starch, qualitative tests of carbohydrates, identification by anthrone method, thin layer chromatography	15	3
IV	Enzyme kinetics Enzymatic reaction, determination of Vmax and Km for individuals salivary amylase, effects of pH and temperature on enzyme kinetics, Effect of inhibitors on enzyme kinetics, study an enzyme catalyzed reaction using hydroquinone as a substrate and peroxidase extracted from cabbage.	10	4
v	Cell staining – capsule, cell wall, lipid granules, metachromatic granules, endospores, Cell motility, Subcellular fractionation of mouse liver tissue, page & western blotting Immunoflourescence of cytoskeleton & nuclear proteins, Meiosis using lily anthers.	10	5

SA19

10

10.5.24

	Integrated M.Sc.	Semester - IV	Semester			
Program	Subject					
Integrated M.Sc.	Biology	2	IV			
Course Code	Cour	se Title	Course Type			
B-401	Cell B	Cell Biology -II				
Credit		Hours Per Week(L-T-P)				
	L	T	P			
4	3		0			
Maximum Marks		CIA				
100	·	60				

Learning Objective (LO): This course will help in broadening the knowledge of the biological functions of all living beings. It will provide deep knowledge signal transduction, cell division etc.

Course Outcomes (C	O):	
--------------------	-------------	--

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Students will able to describe cell junctions found in plant cells (plasmodesmata) and animal cells (tight junctions, desmosomes, gap junctions).	E
2.	Understand the basic principles of signal transduction mechanisms, in particular the concepts of response specificity, signal amplitude and duration, signal integration and intracellular location.	U
3.	Explain how cell division functions in reproduction, growth, and repair.	E
4.	Introduce the basic concept of physiological cell death referred to as apoptosis	U
5.	Techniques are used to study the physiological properties of cells, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function	С

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

1 5 1 1 3		6 7	7 8	9 1	0 11	201	10	0	Constant State State	
3	3 3 3 1 3	1 2				1.124	12	3	4	5
				-	2 2	3	3	3	2	3
3 2	3 3 3 3 2	2 2			3 2	3	3	3	3	2
	3 3 3 2 3	2 2		-	3 2	3	2	3	2	
	3 3 3 2 3	1 2		-	2 2	3	2	2	3	3
2	3 3 3 3 3 3	1 2		2	2 2	-	-	3	2	3
		2 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3 1 2 1 - 2 2 3 2 3 2 3 3 1 2 1 2 2 2 3 2 3 2						

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Unit	Topics Detailed Syllabus: B 401 Cell Biology -II		
No.		No. of Lectures	CO No.
11	Cell Junctions, Cell Adhesion, and the Extracellular Matrix: Introduction, Cell Junctions, Cell-Cell Adhesion, The Extracellular Matrix of Animals, Extracellular Matrix Receptors on Animal Cells. Integrins, Selectins, and other proteins involved in intercellular contacts. The Plant Cell Wall	10	1
	Cell signaling: 1. Introduction: Components involved in signaling, Types of signaling, Three Major Classes of Signaling Receptors: Ion Channel-linked, G protein-coupled receptors (GPRs), Enzyme-Linked receptors: Tyrosine-Kinase Receptors, other enzyme-linked receptors, Second Messengers: cAMP, cGMP, IP3 and DAG, Ca+2, PIP3. Signaling Cascades.	15	2
III	Cell cycle and Cell division: Mechanisms and regulations of cell division, Cyclins and CDKs, Key events in G1 Phase, S-Phase, G2 Phase and Mitosis. Cell cycle checkpoints, Molecular mechanism of cytokinesis, uncontrolled cell division and cancer.	15	3
IV	Types of cell death: Apoptosis-Molecular mechanisms of apoptosis; Key proteins involved in apoptosis: Pro- and anti-apoptotic proteins. Necrosis, Anoikis, Oncosis, autophagy.	10	4
v	Techniques in Cell biology: Cell fractionation, DNA libraries, DNA transfer into eukaryotic cells and Mammalian embryos, Nucleic acid hybridization, Purification of nucleic acid, Isolation and fractionation of proteins.	10	5

BOOKS SUGGESTED:

S.No.	Author	Book
1	Alberts et al.	Molecular biology of the Cell
2	Alberts, Bray et al	Essential Cell Biology Of the Cell
3	James E. Darnell, Harvey F. Lodish, and David Baltimore	Essential Cell Biology Garland, Publication New York 1997 Molecular Cell Biology
4	Geoffrey M Cooper	The Cell 2nd edition A MAL
5	Gerald Karp	The Cell, 2nd edition, A Molecular Approach Cell and Molecular Biology

Integrated M.Sc. Semester - IV

rogram	Subject	Year	Semester
rated M.Sc.	Biology	2	
se Code	Course	IV	
B-402			Course Type
	Biochem	Core	
edit	Ho	ours Per Week(L-T-P)
	Land Land	T	P
4	3	1	0
4	3	1	

10:

10.5.24

SIM 10/5/24

5349

Maximum Marks	CIA	ESE
100	60	40

Learning Objective (LO):

To unravel the complex chemical reactions that occur in a wide variety of life forms which will provide the basis for practical advances in medicine, veterinary medicine, agriculture, and biotechnology. It underlies and includes such exciting new fields as molecular genetics and bioengineering.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Evaluate the role of conversion of energy for cellular activities in any biological system	E
2.	Describe the metabolism of carbohydrates, lipids, proteins and amino acids.	An
3.	Write chemical reactions for the individual steps in each pathway. Identification of the levels of biological organization.	E
4.	To know the digestion and absorption of carbohydrates. It knows where the products from the carbohydrate metabolism intermediate products are used in the body.	Ap
5.	Write the chemical reactions involved in biochemical pathways that produce ATP, such as citric acid cycle and electron transport.	С

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		States and	100.41	No. Frank	POs	6	H MARTS	(11)	1000	Con S		13vest		PSO	Y-LANS	1.12
	STATES	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
CO1	3	3	2	3	3	3	3	2	2	3	2	3	3	3	3	3
CO2	3	3	2	2	2	3	3	2	1	3	2	3	3	2	3	3
CO3	3	3	2	2	2	2	2	2		3	2	3	3	2	2	3
CO4	3	3	2	2	2	2	2	1	-	2	2	3	3	2	2	3
CO5	3	3	2	1	2	2	2	1	-	2	2	3	3	2	2	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 402 Biochemistry-II

Unit No.	Topics	No. of Lectures	CO No.
I	Bioenergetics, and Basic concepts of Metabolism: catabolism and anabolism. Carbohydrate metabolism: Glycolysis and regulation, Feeder pathways of glycolysis, cori cycle, oxygen debt, Pasteur effect, Fates of pyruvate, ATP, NADH	15	1
Ш	TCA cycle, regulation, Gluconeogenesis, Glycogenolysis, Pentose phosphate pathway, Glyoxalate cycle. ETC, inhibitors of ETC, Oxidative Phosphorylation, chemiosmotic theory	15	2
III	Lipid metabolism: B oxidation of unsaturated and saturated fatty acids, propionyl Co A metabolism, significance of ketone bodies, biosynthesis of palmitate, Absorption and transport of fats.	10	3

Г

Amino acid Metabolism: Transamination, Deamination, Fate of amino acid skeleton, urea cycle, precursors of compounds other than proteins.		4
Nucleotide Metabolism: Salvage and De novo pathways of purines and pyrimidines, formation of deoxyribonucleotides, origin of thymine	10	5

BOOKS SUGGESTED:

5.No.	Author	Book
2	D.L. Nelson, M.Cox Stryer L	Lehninger Principles of Biochemistry
3	Starzak Michael E.	Biochemistry Energy and Entropy equilibrium to stationary states
	J McMurry	Fundamentals of General Organic and Biological Chemistry (Study Guide)

Integrated M.Sc. Semester - IV

Program	Subject	Someste					
ntegrated M.Sc.	and the second	Year	Semester				
	Biology	2	IV				
Course Code	Cours	Course Title					
BL-401	Biology	aboratory	Course Type Core				
Credit	AD THE REPORT OF T	Biology Laboratory					
credit	Hours Per Week (L-T-P)						
	L	T	P				
3	•	and the second					
Maximum Marks	Constant Constant Constant	-	6				
Maximum Marks	C	CIA	ESE				
100		60					

Learning Objective (LO):

Describe the evolution, diversity and replication of cells; Explain the role of compartmentalization and signalling in cellular biology; Interpret and explain key experiments of cell biology; Evaluate and apply knowledge of modern techniques in cellular biology. Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles.

1000	-	
		200
		- 20

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL						
1	Gain expertise in Isolation and Analysis of Biomolecules like carbohydrate, protein, RNA and DNA estimation							
2	Understand the mechanism of Nucleic acid extraction and their quantification. Having the practical knowledge about the ability of DNA to withstand pH and Temperature.	AP						
3	Gain expertise on Chromatography (Paper chromatography, Thin layer chromatography, Ion-exchange chromatography, affinity chromatography etc.)	AP						

sage

4	Deep understanding of programmed Cell Death, DNA Laddering and Cell death assay	AP
5	Students will able to detectblood group and Rh factor in the blood sample.	AP

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

PO/CO	Sec. Sec.	Sec.	ALC: N	14 714 2	100049	POs	ALC: LA	C. Marcala	1000	1. I S. I.	(a fai)		121200	PSO	1	15
	1	2	3	4	5	6	17	8	9	10	11	1	2	3	4	1
CO1	3	3	3	2	2	3	3	2	2	2	2	3	3	2	2	2
CO2	3	3	3	2	6	6	1	2	2	2	2	3	3	2	2	2
CO3	3	3	3	3	13	5		2	2	2	2	3	3	2	2	2
CO4	3	3	3	12	-	12	2	2	2	3	3	3	3	3	3	3
CO5	3	3	3	h	5	12		2	2	3	3	3	3	3	3	3

. O.PO/DSO M .

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL401 Biology Laboratory

SN	Experiment	No. of Lab	CO No.
I	Isolation and Analysis of Biomolecules(i) Carbohydrate estimation by DNSA (ii) protein estimation by Peterson method (iii) RNA estimation by Orcinol method (iv) DNA estimation by DPA method	10	1
п	Nucleic acid extraction - from plant & animal tissue using ethanol precipitation Estimation using Agarose gel electrophoresis Analysis of DNA under various conditions - pH and Temperature	10	2
III	Chromatography (a) Paper chromatography-chromatography of amixture of amino acids (b) TLC, Gel filtration (c) Ion-exchange chromatography, affinity chromatography	10	3
IV	Study Programmed Cell Death DNA Laddering and Cell death assay (quantification by Evans Blue), Barr bodies and Meiosis using lily anthers	10	4
v	To detect blood group and Rh factor in the blood sample. Introducing undergraduate students to real-time PCR	5	5

10: 6.24

Integrated M.Sc. Semester - V

Program	Subject	Year	Semester		
Integrated M.Sc.	Biology	3	V		
Course Code	Course	Course Type			
B-501	Gen	Core			
Credit	He	ours Per Week (L-T-P)			
	L	T	P		
4	3	1			
Maximum Marks	CI	A	ESE		
100	60)	40		

Learning Objective (LO):

To develop deep understanding of genes and heredity of how certain qualities or traits are passed from parents to offspring as a result of changes in DNA sequence. The causes of important human diseases are being discovered, and therapies developed, based on fundamental genetic investigations.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Compare and explain the inheritance of germline and somatic mutations. Describe the sequence of events involving DNA in meiosis from chromosome duplication through chromosome segregation.	U
2.	The transmission to the future generation of various traits that are because of alleles at gene loci on a sex chromosome is known as sex-linked inheritance.	An
3.	Understanding of bacterial genetics that allowed researchers to implant foreign DNA in their genome and produce proteins that have benefited humans	С
4.	Understand the link between environment and evolution. Be familiar with the different agents of evolution	Ар
5.	Calculate the measures of the centre of data: mean, median, and mode. Recognize and calculate the measures of the spread of data; variance standard david	An
CL: C	ognitive Levels (R-Remember: II-Understanding: Am Amaland deviation, and range.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

1	2	3	4	1 6	ALC: NUMBER	1 - ALTONIA							PS		
	12			1 3	6	7	8	0	10	L		1-	0	and and	
	15	3	12	12	12	12	0	y	10	11	1	2	3	4	5
	2	-		<u> </u>	3	3	μ	2	3	2	3	3	3	3	3
	3	3	2	3	2	3	2	1	3	2	1	h	12	-	5
	3	3	2	3	2	1	h			-	-	<u>P</u>	4	4	2
	1	2	5-	-	-	-	4	1	3	2	3	β	2	2	3
	-	2	2	د	3	3	β	1	3	2	3	3	3	2	1
	3	3	3	3	3	3	3	2	3	0	1	h	5		-
		3 3 3 3	3 3 3 3 3 3 3 3 3 3	3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3	3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3	3 3 2 3 3 3 3 2 3 2 3 3 2 3 2 3 3 2 3 3 3 3 3 3 3	3 3 2 3 3 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3	3 3 2 3 3 3 3 3 3 2 3 2 3 2 3 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3	3 3 2 3 3 3 3 2 3 3 2 3 2 3 2 1 3 3 2 3 2 3 2 1 3 3 2 3 2 3 2 1 3 3 2 3 3 3 3 1 3 3 3 3 3 3 3 2	3 3 2 3 3 3 3 2 3 3 3 2 3 2 3 2 1 3 3 3 2 3 2 3 2 1 3 3 3 2 3 2 3 2 1 3 3 3 2 3 3 3 3 1 3 3 3 3 3 3 3 3 3 2 3	3 3 2 3 3 3 3 3 2 3 2 3 3 2 3 2 3 2 3 2 1 3 2 3 3 2 3 2 3 2 3 2 1 3 2 3 3 2 3 2 3 2 3 2 1 3 2 3 3 2 3 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 2 3 2	3 3 2 3 3 3 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 3 3 2 3 2 3 2 1 3 2 3 3 3 2 3 2 3 2 1 3 2 3 3 3 2 3 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3	3 3 2 3 3 3 3 2 3 3 3 3 2 3 2 3 2 1 3 2 3 3 3 3 2 3 2 3 2 1 3 2 3 3 3 3 2 3 2 3 2 1 3 2 3 3 3 3 2 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 3	3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 2 3 2 3 2 3 2 3 3 3 3 3 2 3 2 3 2 1 3 2 3 3 3 3 2 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3	3 3 2 3

-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

)el Sde
Unit No.	Detailed Syllabus: B 501 Genetics Topics	No. of Lectures	CO No.
Ι	Overview and Introduction of Genetics: Central Dogma, Genotype and Phenotype, Eukaryotic and Prokaryotic Genes, Forward and Reverse Genetics, Mendelian Inheritance: Law of Dominance, Law of Segregation, Law of Independent Assortment, Deviation from Mendelism: Incomplete dominance, Co-dominance.	10	1
п	Epistasis, Polygeneic Inheritance, Cytoplasmic Inheritance, Linkage and Recombination, Sex Linkage and Sex-Linked Inheritance, Pedigree Analysis	10	2
III	Bacterial Genetics: Transformation, Conjugation, Transduction (Lambda Phage), Human genome and genetics: Elements of human genetics & genetic disorders, Examples from <i>Drosophila</i> , yeast, maize and mouse, Immunogenetics.	15	3
IV	Genes and Evolution: The law of DNA constancy and C-value paradox: Numerical and structural changes in chromosomes; Molecular basis of spontaneous and induced mutations and their role in evolution; Environmental mutagenesis and toxicity testing; Population genetics	10	4
v	Biostatistics: Principles and practice of statistical methods in biological research; samples and populations; Basic statistics – average, statistics of dispersion, coefficient of variation; Standard error; Confidence limits; Probability distributions binomial, Poisson and normal; Tests of statistical significance; Simple correlation of regression; Analysis of variance.	15	5

BOOKS SUGGESTED:

S. No.	Author	Book
1	E. J. Gardner, D.P Snustad and M. J Simmons	Principles of Genetics
2	Leland Hartwell, Leroy Hood, Michael Goldberg, Ann Reynolds, Lee Silver, Ruth Veres.	Genetics: From genes to genomes
3	Anthony J. F. Griffiths. 2010	Introduction to genetic analysis
4	Harvey Motulsky, 2010	Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking
5	Marcello Pagano, 2000	Principles of Biostatistics
6	Peter J. Russell	Genetics: A Molecular Approach

H10.5.24 1212 S

	Sc. Semester – V						
Subject	Year	Semester					
Biology	3	v					
Cou	Course Title						
Molect	Core						
	Р)						
L	T	Р					
3	2	0					
Will Brits Martin W.	CIA	ESE					
	40						
	Subject Diology Cou Molect L 3	Biology 3 Course Title Molecular Biology Hours Per Week (L-T-					

Learning Objective (LO):

It will provide understanding of how molecules interact with one another in living organisms to perform the functions of life. Give knowledge of Major application of molecular biology are genetic analysis and gene cloning, DNA fingerprinting and forensics, genomics and computational approaches to genetics.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Construct a model of the structure of the DNA molecule. Define key terms associated with the structure of DNA. Identify the four nitrogen bases that compose DNA. Summarize the history of human knowledge about DNA.	U
2.	Outline the basic steps involved in DNA replication, including major differences between eukaryotes and bacteria. Explain how eukaryotes overcome the difficulty of replicating the ends of linear chromosomes.	U
3.	Understand the purpose of the cell's performing transcription and translation. Predict RNA and protein sequences from a given gene. Analyze the effects of a DNA mutation on the RNA and protein produced from that DNA	An
4.	Gene regulation is necessary for making or synthesizing correct proteins where they are required. So it maintains the stability of the body. Hence, homeostasis is an outcome of gene regulation.	Е
5.	State the potential effects of mutations on proteins produced as being beneficial, neutral, or harmful, the outcome of recombination is to ensure that each gamete includes both maternally and paternally derived genetic information	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

POCO	i i i i i i i i i i i i i i i i i i i	POs												PSO				
A 07047070	881 28	2	3	4	5	6	7	8	9	10	11	111	2	3	4	5		
COI	3	3	3	3	3	3	3	2	2	3	2	3	3	2	3	3		
CO2	3	3	3	2	3	2	3	2	-	3	2	3	3	2	2	3		
CO3	3	3	3	2	3	2	3	2	-	3	2	3	3	2	2	3		
CO4	3	3	3	2	3	2	3	2	-	3	2	3	3	2	3	3		
CO5	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	3		

CO-PO/PSO Manning for the course:

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed	Syllabus:	B 502 Molecular	Biology
----------	-----------	-----------------	---------

Unit No.	Topics	No. of Lectures	CO No.
I	Molecular biology an overview: Concept and definition of the gene, complexity of the eukaryotic gene. Structural organization of the DNA in the nuclear material- General properties of histones, nucleosomes and solenoid structure, RNAs and their structure & function.	10	1
11	DNA synthesis: The enzymes of DNA replication in prokaryotes and eukaryotes, mechanism of replication in bacteria and viruses, reverse transcriptase, salient features of eukaryotic nuclear and mitochondrial DNA replication.RNA synthesis: The enzymes of transcription in prokaryotes and eukaryotes, mechanism of transcription in bacteria, heteronuclear RNA, post transcriptional processing of RNA, role of ribozymes.	15	2
111	Protein synthesis: Concept of the genetic code, structure of t RNA and r RNA, enzymes of translation in prokaryotes and eukaryotes, mechanism of protein synthesis, post translational processing of proteins, translational inhibitors. Protein sorting, Vesicular traffic inside the cells, targeting & degradation	15	3
IV	Gene expression and its characterization: Regulation of gene expression in prokaryotes, eukaryotes, λ phage, structure and mechanism of different operons, Gene regulation during development, Gene function and phenotype loss of function & gain of function, Gene interaction, suppressors & enhancers.	10	4
v	Mutations and their consequences: Definition of mutation, mutagenesis & mutant selection, Alleles, Complementation, Recombination, recombination mapping and mechanism of recombination, Repair of DNA, Transposons & retroposons.	10	5

BOOKS SUGGESTED:

S. No.	Author	Book						
1	Stryer L	Biochemistry, 4 th edition,						
2	Watson J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M.	, Molecular biology of the gene, 4 th edition, The Benjamin/Cummings publishing companies						
3	Benjamin Lewin	Genes VII, oxford University Press, Oxford						
X	The Alion Ba	wind (Same						

yig ,

4	Weaver R. F.	Molecular biology
5	Brown T A	Essential molecular biology, vol. I, A practical approach, IRL press, Oxford.
6	Cox Lynne S	Molecular Themes in DNA Replication
7	Gerald Karp	Cell and Molecular Biology

Program	Subject	Semeste						
Integrated M.Sc.	Biology	3	v					
Course Code	Course	Course Type						
B-503	Biodiversity of	Core						
Credit	Hours Per Week(L-T-P)							
	L	T	P					
5	3	2	0					
Maximum Marks	CL	A	ESE					
100	60	40						

Learning Objective (LO):

Studying the concept of biodiversity involves counting the total number of species living in a specific area. The study of the diversity of plants and animals will result in awareness about many organisms and help in the conservation of species that are on the verge of extinction.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Understand the principles of general taxonomy and use of nomenclature rules of plants. Understand historical development of taxonomy.	U
2.	The main objectives of plant taxonomy is to identify characteristics of undiscovered species by comparing with known species, to specify characteristics of recently discovered species, to arrange them in respective 'taxa' after looking at their similarities and to give them scientific names	С
3.	Compare the important differences between bryophytes, pteridophytes, gymnosperms and angiosperms. Identify the structures and evolutionary trends associated with the diversification of plants in terrestrial habitats (e.g., decrease in the significance of the haploid generation, endosporic development of gametophytes, vascular tissue, heterospory, seeds, pollen, etc.).	Ap
4.	Cellular mechanism which will further improve the understanding of processes of living beings.	U
5.	Identify ecological requirements and maintaining factors for priority species and ecosystems.	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

POCO		POs											PS O					
	1	2	3	4	5	6	17	8	9	10	11	1218	2	3	4	5		
CO1	3	3	3	3	3	2	3	2	1	3	2	3	3	2	3	2		
CO2	3	3	3	2	2	2	3	2	1	3	2	3	3	2	2	3		
CO3	3	3	3	2	3	2	2	2	1	3	2	3	3	2	2	2		
CO4	3	3	3	2	2	2	2	2	1	3	2	3	3	2	3	2		
CO5	3	3	3	3	3	2	2	3	1	3	2	3	3	3	3	2		

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed S	yllabus: B 503	Biodiversity of	plants/animals
------------	----------------	------------------------	----------------

Unit	Topics	No. of	СО
No.		Lectures	No.
I	Principles of taxonomy: Concept of species and hierarchical taxa, Biologicalnomenclature, Taxonomical structure, Outline classification of animals, important criteria used for classification in each Taxon, Classification of animals Levels of Structural organizations: Larval forms and their evolutionary significance, Unicellular, colonial, and multicellular forms, Levels of organization of tissues, organs, and systems, Comparative anatomy.	10	1
Ш	Classical and quantitative methods in taxonomy: Biosystematics, Interrelationship among major invertebrate phyla and minor invertebrate phyla; Evolutionary relationship among taxa, Natural History of Indian subcontinent: Major habitat types, Geographical origin and migration of species, Common Indian flora and fauna.	15	2
ш	Taxonomy of plants: Plant identification, nomenclature, collecting and documentation, plant phylogeny and systematics. Gymnosperms: Characteristic features, outline classification, morphology and anatomy of ovules and female gametophyte, microspore and male gametophyte, seeds, stem and leaves.	15	3
IV	Angiosperms: Characteristic features, outline classification, comparison of monocotyledons and dicotyledons, vascular anatomy, leaves, flower, fruits and seeds. Comparative anatomy and morphology of angiosperms and gymnosperms.	10	4
v	Concepts and characteristics of biodiversity: The concepts of biodiversity, Different strategies for conserving biodiversity. a. Conservation Strategies, b. Laws and Legal Actions, c. Grassroots Action Program Comparison of historical and current rate of species extinction, Importance of preserving biodiversity, Genetic diversity, Causes and consequences of biodiversity loss: Address the major threats to biodiversity- a. Habitat Loss & Alteration b. Exotic Species c. Chemical Pollutants d. Loss of Genetic Diversity in Crops.	10	5

Str Og. e.

9

BOOKS SUGGESTED:

10

S. No.	Author	Book
1.	Cecie Starr, Ralph Taggart, Christine Evers, and Lisa Starr	Biology: The Unity and Diversity of Life
2.	Hawksworth, D. L. & Bull Alan T.	Plant Conservation and Biodiversity. Series: Topics in Biodiversity and Conservation, Vol. 6 (Eds.) Reprinted from Biodiversity and Conservation, 16:6, 2007, VIII, 424 p.
3.	M P Singh	Plant Biodiversity & Taxonomy
4.	E.O. Wilson, Editor. Frances M. Peter	Biodiversity
5.	Peter H. Raven, Ray F. Evert, and Susan E. Eichhorn	Biology of Plants

Integrated M.Sc. Semester - V

Program	Subject	Year	Semeste			
ntegrated M.Sc.	Biology	3	V			
Course Code	Cours	e Title	Course Type			
BL-501	Biology	Biology Laboratory				
Credit		L P).				
	L	T	P			
5	-	•	10			
Maximum Marks	Contraction Contraction Contraction	lA	ESE			
100		60				

Learning Objective (LO):

Develop awareness of sample types, preparation, and storage for molecular biology tests. A key goal of molecular genetics is to identify and study genetic mutations. Researchers search for mutations in a gene or induce mutations in a gene to link a gene sequence to a specific phenotype. Develop awareness of sample types, preparation, and storage for molecular biology tests. Understand applicability of testing to various sample types.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:					
1	Develop a strong foundation in the application of Bacterial Genetics Transformation, Conjugation, Transduction, Phage Titration, Transposition, α - Complementation, Karyotyping.	AP				
2	Understand the Biodiversity in surrounding soil, air and water samples. Isolation of microflora and their morphological and microscopic characterization	AP				

3	Develop a strong foundation on general Molecular Biology Laboratory Procedures like DNA extraction, detection and amplification using PCR				
4	Develop expertise on Plasmid isolation and Purification, RE Digestion & Detection of the RE-digested product Using restriction mapping to teach basic skills in the molecular biology, Blunt-end cloning (after Ligation), Preparation of competent cells & Transformation of <i>E. coli</i> cells with plasmid	АР			
5	A deep understanding on protein extraction & separation using polyacrylamide gel electrophoresis SDS-PAGE, Western blot analysis	AP			

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO	Mapping for the course:
POCO	a de la course.

6

FUCO		POs									PS					
	1	2	3	4	5	6	17	8	9	10	1.11	1 1	12	0	1	IE
CO1	3	3	3	3	3	2	2	h	1	2	h	2	2	13	4	3
CO2	3	3	2	6	-	-	5	4	1	3	2	3	3	2	3	2
CO3		-	3	4	2	2	3	2	1	3	2	3	3	2	2	3
the state of the second se	5	3	3	2	3	2	2	2	1	3	2	3	3	b	2	h
CO4	3	3	3	2	2	2	2	b	1	2	6	<u> </u>	5	Ê	2	4
CO5	3	2	2	2	12	~	-	É -	1	3	2	B	В	2	3	2
"3"_Str	-	P	3	Р	3	2	2	B	1	3	2	3	В	3	3	2

ong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL501 Biology Laboratory

	Experiment	No. of Lab	CO No.
I	Bacterial Genetics E. coli Transformation, Conjugation, Transduction Phage Titration, Transposition, α - Complementation, Karyotyping	10	1
п	Biodiversity Biodiversity in soil, air & Winogradsky's Column – Plating, Colony Characterization & Gram Staining	10	2
ш	General Molecular Biology Laboratory ProceduresExtraction of genomic DNA Using Kit method & By conventional Ethanol Precipitation method, Detection of Nucleic acids (AGE), Polymerase Chain Reaction (PCR) & Detection of the PCR product and its purification	10	3
IV	Plasmid isolation and Purification, RE Digestion & Detection of the RE- digested productUsing restriction mapping to teach basic skills in the molecular biology, Blunt-end cloning (after Ligation), Preparation of competent cells & Transformation of <i>E. coli</i> cells with plasmid	10	4
v	Protein extraction & separation using polyacrylamide gel electrophoresis SDS-PAGE, Western blot analysis to illustrate relative control levels of the lac and ara promoters in <i>E. coli</i>	10	5

D	Integrated M.Sc.	Semester - VI			
Program	Subject	Year	Semester		
Integrated M.Sc.	Biology	3	VI		
Course Code	Course	Title	Course Type		
B-601	Immu	Core			
Credit	H	and the second			
	L	T	P		
3	2	l I	0		
Maximum Marks	G	IA	ESE		
100	6	40			

Learning Objective (LO):

It will provide understanding for the development of new therapies and treatments that can manage or cure the condition by altering the way the immune system is working or, in the case of vaccines, priming the immune system and boosting the immune reaction to specific pathogens.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Describe the purpose of the immune system. Identify the components of the immune system. Differentiate between the innate and adaptive immune response	U
2.	To understand how the immune system develops, how the body defends itself against disease, and what happens when it all goes wrong.	E
3.	Explain the genetic events that lead to diversity of T-cell receptors. Compare and contrast the various classes and subtypes of T cells in terms of activation and function	An
4.	Distinguish between an antigen and an antibody, describe the chemical structure of an antibody (immunoglobulin) protein, describe different mechanisms of how antibodies limit the effects of pathogens or toxins by opsonization, neutralization, agglutination, precipitation, lysis, and antitoxin action.	Ap
5.	Demonstrate the basic knowledge of immunological processes at a cellular and molecular level. Define central immunological principles and concepts.	С
CL:C	ognitive Levels (R-Remember: II II downtoo dia at a table	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

2 3 3	3	2	3	2	7 3	2	9	10	11	1	2	PSO 3	4	5
3	3	2	3	2	3	2	2	2	2	12	-		10.04	3
3	3	þ	12	-							12	2	2	
_			13	b	3	2	5	5	-	5	5	2	2	3
3	3	h	6	5	h	2	2	2	2	3	3	2	2	3
12	-	6	P	4	P	3	2	3	3	3	3	3	3	3
3	ز	4	В	3	3	3	2	3	3	3	3	3	3	3
3	3	В	B	3	3	3	2	3	3	3	3	3	2	-
	3 3 Moder	3 3 3 3 Moderate:"1	3 3 3 3 3 3 Moderate: "1"-1 o	3 3	3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 Moderate: "1"-Low" "NoCo 3 3 3 3	3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Moderate: "1" Low" "No constant" "No constant" "No constant" "No constant"	3 3 3 3 2 3	3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 2	3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3	3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3	3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 Moderate: 1 -1 ov: ""NoCorrelation	3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3	3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 2 3 2 3

5 -Strong; 2 -- Moderate; "1"-Low; "-"NoCorrelation

2

	Detailed Syllabus: B 601 Immunology		
Unit No.	Topics	No. of Lectures	CO No.
I	Overview of the Immune system: Types of immunity, innate, acquired, passive and active, self vs nonself discrimination, Adaptive immune response, Autoimmunity	10	1
п	Cells and organs of the immune system: T cell receptors, T cell receptor genes & gene rearrangements, T cell maturation, activation & differentiation, B cell generation, activation & development	15	2
ш	Antigens and Antibodies: Immunoglobulins- structure and function, Immunoglobulin genes- Organization and rearrangement, Antibody diversity, Antigen antibody reactions, MHC (antigens and genes), Antigen processing & presentation	10	3
IV	Immune response: Self Non-self discrimination (mechanism), Clonal selection theory & idiotypic network hypothesis, Cytokines, The complement system, Cell mediated effector response, Leukocyte migration and inflammation, Hypersensitive reactions, Immune regulation, Immune response to infectious organisms, Vaccines, Immunodeficiency diseases (AIDS)	15	4
v	Immunology & applications: Transplantation immunology, Tumour immunology, Immunotechnology, Animal models. Plant immunity	10	5

BOOKS SUGGESTED:

S. No.	Author	Book
1.	Goldsby, Kindt, and Osborne	Immunology
2.	Janice Kuby	Immunology
3.	Ivan Roitt	Essential Immunology, 8th Edition
4.	Cellular and Molecular Immunology	Kathyrn Austyn
5.	David	Biology of Immunological Diseases
6.	Richard Burry	Immunocytochemistry: A practicalguide for Biomedical Research

Integrated M.Sc. Semester - VI

	Integrated integr	Statester 11	
Program	Subject	Year	Semester
Integrated M.Sc.	Biology	3	VI
Course Code	Course	Course Type	
B-602	Animal I	Core	
Credit	Rest and the H	·P)	
and the second	L. L	T	P
3	2	1	0
Maximum Marks	Ċ	IA	ESE
100		40	

est Jus Ê

Learning Objective (LO):

4

Understanding the basics of animal anatomy and physiology will help the students to manage and care for animals. Appropriate for beginners and intermediate students alike, this course will help you learn the baselines for animal health and biological systems. It will help to understand how to diagnose disease.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles	U
2.	Name and describe functions of the nervous system. Define key terms, like neurons and motor functions. Demonstrate knowledge of the nervous system through writing	E
3.	The students will learn how many muscles are in the human body. The students will learn about the three types of muscle tissue: visceral (smooth), cardiac, and skeletal. The students will be able to identify the name and location of major muscles in the body.	An
4.	List the major functions of the respiratory system. Outline the forces that allow for air movement into and out of the lungs. Outline the process of gas exchange. Summarize the process of oxygen and carbon dioxide transport within the respiratory system.	Ар
5.	Define excretion, and identify organs of the excretory system. Outline the structures and functions of the urinary system. Explain how the kidneys filter blood and produce urine. Describe how the kidneys help maintain homeostasis.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		POs										PS					
	1	2	3	4	5	6	7	8	9	10	111	121	2	3	4	5	
CO1	3	3	3	2	3	2	3	2	2	2	2	3	3	2	3	3	
CO2	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3	
CO3	3	3	3	2	3	2	3	3	2	2	2	3	3	2	2	3	
CO4	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3	
CO5	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: B 602 Animal Physiology

Unit No.	Topics	No. of Lectures	CO No.
I	Cell Structure & Metabolism: Homeostasis, Mechanisms of Cellular Control, Membrane Transport, Membrane Potentials (a review). Body Control: Hypothalamic/Pituitary Axis, Mystic Rhythms	5	1
11	Neurons and the Nervous system: Synapses, Sense Perception, Special Senses, CNS Design: Autonomic Nervous System, Action Potential, - Basic structures of neurons and glia, Neurotransmission: Ion channels, Membrane potentials, Resting potential - Depolarization, repolarization and hyperpolarization. Electrotonic and Action potential, Mechanism of neurotransmission. Membrane channels -voltage	15	2

	gated, ligand gated, mechanically gated. Basics of a synapse (electrical and chemical).Introduction to central nervous system design: Structural and functional outline of the brain and the spinal cord, Hypothalamus: Osmoregulation, temperature control, and role in neuroendocrine system: Hypothalamus-hypophyseal portal system, Autonomic Nervous System (sympathetic and parasympathetic pathways). Reflex action.		
III	Muscular system: Skeletal Muscle, Muscle Characteristics, Muscle Control, Muscle Exercise, Smooth Muscle. Cardiovascular Systems: Cardiac Muscle, Heartbeat, Cardiac Control, Blood: Hemostasis, Temperature Control, Vessels, Tissue Exchange, EKGs and Blood Pressure. Digestion: Absorption	10	3
IV	Respiratory Systems: Respiration, Respiratory Control. Energy Balance and Metabolism: Fuel Metabolism (both plants and Animals)	10	4
v	Processes: Excretion Control Salt & Water Balance, An example of a process going wrong.Diabetes. Comparative Physiology	5	5

BOOKS SUGGESTED:

S. No.	Author	Books							
1.	Linda S. Costanzo	Physiology: Board Review Series							
2.	William Ganong	Review of Medical Physiology (Lange BasicScience)							
3.	Guyton and Hall	Physiology Review							
4.	Appleton and Lange	Review of Physiology							
5.	Linardakis	Illustrated review of Physiology							

Integrated M.Sc. Semester - VI

Program	Subject	Year	Semester				
Integrated M.Sc.	Biology	3	VI				
Course Code	Course	Title	Course Type				
B-603	Plant Ph	Plant Physiology					
Credit	Ho	P)					
	L	T	P				
4	3	0					
Maximum Marks	CL	ESE					
100	60	40					

Learning Objective (LO): It will enable to analyze the processes in plants, namely – photosynthesis, mineral nutrition, respiration, transportation, and ultimately plant development and growth which are traits displayed by living entities.

.24

Course	Outcomes	(CO):	

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Students can describe how plants absorb minerals from the roots. All students can explain why plants need a variety of minerals for healthy growth. Most students can identify two mineral deficiencies in plants.	An
2.	Explain the process of photosynthesis. Compare the leaves of a plant that has all the components needed for photosynthesis to one that has a component missing.	E
3.	Describe how plants obtain the reactants needed for respiration, including the role of the roots and the stomata, explain how the products of respiration are removed from the plant, recognize the relationship between respiration and photosynthesis in a plant	U
4.	Students will understand basic principles, processes and functions of plant growth and reproduction, including photosynthesis, respiration, transpiration, vegetative growth and reproductive growth, fertilization and fruit formation.	Ap
5.	Students will learn about floral structure and why flowers are important to pollination and reproduction. They will do a flower dissection and drawing, labeling the parts of the flower in order to learn the structure of a plant reproductive system.	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

0

POCO	12.5	POs											PSO				
	100	2	3	4	5	6	1 27	8	9	10	11	111	2	3	4	5	
COI	3	3	3	2	2	2	2	2	-	2	2	3	R	b	2	2	
CO2	3	3	3	2	2	2	3	2	-	2	6	3	h	ĥ	2	6	
CO3	3	3	3	2	3	3	2	6	-	2	h	2	6	6	2	p	
CO4	3	3	3	3	2	2	3	2	2	2	2	5	2	4	2	<u>ه</u>	
CO5	2	2	2	5	2	4	5	-	2	3	P	5	4	В	3	В	
Company Property and when	1997 D	р	3	3	3	3	3	β	2	3	3	3	ß	3	3	3	

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

A 10.5.24

Detailed Syllabus: B 603 Plant Physiology

Unit	Topics	No. of	CO
No.		Lectures	No.
I	 Plant Cells - Model Organisms, The Plant Kingdom, Flower Structure and the Angiosperm Life Cycle, Plant Tissue Systems: Dermal, Ground, and Vascular, Structure of Chloroplast Glycosylglycerides, Specialized Vacuoles in Plant Cells Water and Plant Cells- Water transport process, Diffusion, Osmosis, Diffusion pressure deficit, Concept of water potential, measuring of water potential, The Matric Potential, Wilting and Plasmolysis Water Balance of Plants- Water absorption by roots, Water transport through xylem, The Cohesion-Tension theory, Water movement from leaf to the atmosphere, Mineral nutrition: Essential nutrients, Deficiencies and Plant disorders, Soil, roots and microbes: Mycorrhizal fungi and its significance. Solute Transport Passive and active transport, membrane transport process, membrane transport protein, ion transport in roots, Apoplastic and symplastic 	10	1

to am

	movement of solutes. Goldman Equation, Patch Clamp Studies in Plant Cells		
11	Photosynthesis- The Light reactions; Photosynthetic pigments, Key experiments	10	2
	in understanding photosynthesis, Action spectrum and absorption spectrum,		
	Photochemical reaction centres, Red drop effect, Enhancement effect, Midpoint		
	Potentials		
	Photosynthesis- The Carbon Reactions		
	Organization of the photosynthetic apparatus, Photosystem I and II, Oxygenic		
	and Anoxygenic photosynthesis. Organization of light absorbing antenna		
	systems, mechanism of electron transport, Z-scheme, proton transport and ATP		
	synthesis in chloroplast, Repair and regulation of photosynthetic machinery,		
	genetic, assembly and evolution of photosynthetic systems. Photosynthesis:		
	Carbon reactions; The Calvin cycle, regulation of the Calvin cycle, The C2		
	oxidative photosynthetic carbon cycle, C4 cycle, Crassulacean acid metabolism		
	(CAM CYCLE), synthesis of starch and sucrose. Rubisco: A Model Enzyme for		
	Studying Structure and Function		
	Photosynthesis- Physiological and Ecological Considerations		
	Working with Light, Heat Dissipation from Leaves: The Bowen Ratio		
	The Geographic Distributions of C3 and C4 Plants		
	Translocation in the Phloem		
	Translocation in the phloem, pathways of translocation, patterns of translocation:		
	source to sink; Materials translocated in the phloem, rates of movement, The		
	mechanism of translocation in the phloem: The pressure flow model, Phloem		
111	loading and unloading.		
m	Respiration and lipid metabolism- Glycolysis, citric acid cycle, electron transport	10	3
	Multiple Energy Conservation Bypasses in Oxidative Phosphorylation of Plant Mitochondria, and ATP synthesis.		
	Lipid metabolism- biosynthesis of triacylglycerols and polar glycerolipids.		
	Assimilation of mineral nutrients, Nitrate assimilation, Ammonium assimilation,		
	Biological nitrogen fixation, Development of root nodule, Sulphur assimilation,		
	Phosphate assimilation, Oxygen assimilation.		
	Secondary metabolites and Plant defense- Cutin, waxes and suberin, Biosynthesis		
	of Terpenes, The Shikimic Acid Pathway, Detailed Chemical Structure of a		
	Portion of a Lignin Molecules, Phenolic compounds, Flavonoids, Alkaloids,		
	Cynogenic glycosides, Glucosinolates and their functions. Plant defence against		
	pathogens, synthesis of antimicrobial compounds against pathogens,		
	hypersensitive response by plants, Systemic acquired resistance, Phytoalexins,		
	Cell walls: Structure, Biogenesis, and Expansion, rate of cell elongation, wall		
	degradation and plant defense.		
1V	Growth and Development- Embryogenesis, Meristems in plant development,	16	
9 A/AL	Cell differentiation.	15	4
	Phytochrome and light control of plant development-The photochemical and		
			12
	biochemical properties of phytochrome. Localization of phytochrome in tissues		

12 101 S. S.

D's's

40

Ho. (. 24

	Ecological functions: Shade avoidance, circadian rhythms, phytochrome		1
	specialization.		
	Blue light responses- Stomatal movements and morphogenesis, blue light		
	photoreceptors: cryptochrome, phototropins, carotenoid and zeaxanthin.		
	Plant hormones: Biosynthesis, metabolism, transport, physiological effects and		
	signal transduction pathways of auxins, gibberellins, cytokinins, abscisic acid and ethylene.		
	Gibberellins- Regulators of Plant Height and Seed Germination, Structures of		
	Some Important Gibberellins, Gibberellin Biosynthesis, Effects of GAs on Flowering		
			1
	Cytokinins- Regulators of Cell Division, Structures of Some Naturally		
1	Occurring Cytokinins, Cytokinin Can Promote Light-Mediated Development,		
	Cell Expansion and Greening in Cotyledons, Interact with Elements of the Circadian Clock		
	Ethylene- The Gaseous Hormone, Ethylene in the Environment Arises Biotically and Abiotically ACC Synthese Gree Environment Discussion		
	and Abiotically, ACC Synthase Gene Expression and Biotechnology, The hookless Mutation Alters the Pattern of Auxin Gene Expression, Ethylene		
	Inhibits the Formation of Nitrogen-Fixing Root Nodules in Legumes, Ethylene		
	Biosynthesis Can Be Blocked with Anti-Sense DNA, Abscission and the Dawn		
	of Agriculture, Specific Inhibitors of Ethylene Biosynthesis Are Used		
	Commercially to Preserve Cut Flowers		
	Abscisic Acid- A Seed Maturation and Stress-Response Hormone, The Structure		
	of Lunularic Acid from Liverworts, ABA May Be an Ancient Stress Signal,		
	Structural Requirements for Biological Activity of Abscisic Acid, Yellow		
	Cameleon: A Noninvasive Tool for Measuring Intracellular Calcium,		
	Phosphatidic Acid May Stimulate Sphingosine-I-Phosphate Production, The		
	ABA Signal Transduction Pathway Includes Several Protein Kinases, The ERAI		
	and ABH Genes Code for Negative Regulators of ABA Response, ABA may play		
	a Role in Plant Pathogen Responses, Proteins Required for Desiccation		
	Tolerance, The Types of Coat-Imposed Seed Dormancy, Types of Seed		
	Dormancy and the Roles of Environmental Factors, The Longevity of Seeds,		
	Genetic Mapping Of Dormancy: Quantitative Trait Locus (OTL), Scoring of		
	Vegetative Dormancy Combined with a Candidate Gene Approach ABA-Induced		
	Senescence and Ethylene.		
v	The control of flowering- Floral meristems and floral organ development, the	15	5
	characteristics of shoot meristems in Arabidopsis change with the development		
	The four different types of floral organs are initiated as separate whorls. Three		
	types of gene regulate floral development. Meristem identity genes regulate		
	meristem function, Homeotic genes control floral organ identity. The ABC model		
	for determination of floral organ identity.		
	Floral evocation- Internal and external cues, the shoot apex and phase changes,		
	Combinatorial model of shoot development in maize. Phase changes can be		
	influenced by Nutrients, Gibberellins and other chemical signals, Competence		
1)			
N	11 At an and a		
IN	ATT TO STAND	0	N
K-//.		(50)	4
12/1	in the second s	01	200
	- 101		

and determination are two stages of floral evocation, Circadian rhythms: The Clock within, Phase Shifting Adjusts Circadian Rhythms to different Day-Night Cycles, Phytochrome and Crptochromes entrain clock. Stress physiology- Response and adaptation to stress, water deficit and draught Resistance, drought stress, flood stress, salt stress, heat stress, chilling stress and freezing stress.

BOOKS SUGGESTED:

S. No.	Author	Book
1.	Hans Mohr, Peter Schopfer	Plant Physiology; Springer, 629 pages
2.	Taiz and Zeiger	Plant Physiology; 4 th Edition. Sinauer
3.	Hopkins WG	Introduction to Plant Physiology. 2 nd or 3 rd Edition
4.	Stern KR	Introductory Plant Biology. 7 th Ed. Wm C Brown Publishers
5.	Fosket	Plant Growth and Development: A molecular approach
6.	Buchanan R, Gruissem W	Biochemistry and Molecular Biology

Integrated M.Sc. Semester - VI

Program	Subject	Year	Semester		
ntegrated M.Sc.	Biology	3	VI		
Course Code	Course	e Title	Course Type		
B-604	Micro	Microbiology			
Credit	I I I I I I I I I I I I I I I I I I I	Iours Per Week(L-T-	P)		
A March 199	L	T	P		
4	3	3 1			
Maximum Marks		CIA			
100		60	40		

Learning Objective (LO):

It will give insights into the complexity of microorganism which in turn provide many different health, environmental, social, cultural, industrial and economic benefits and harms.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Microbial diversity is the key to human survival and economic security as it provides a vast variety and reservoir of resources which can be utilized by humans for their benefits	U
2.	Describe diversity of microorganisms, bacterial cell structure and function, microbial growth and metabolism, and the ways to control their growth by physical and chemical means.	U
3.	Introduce basic principles and application relevance of clinical disease for students	/ E

	Students will be able to recognize of parasites which are important for human health and	Ap
C	caused disease.	
o.	Student should be able to describe unique characters of protozoa, and their importance in	Ap
	human life. initive Levels (R-Remember: U-Understanding: An-Apply: An-Apply: E. Evaluate: C. Create)	1000

Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	新闻的	POs									PSO					
0.0	(編] []	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
COI	3	3	3	2	2	3	3	2	1	2	2	3	3	2	2	3
CO2	3	3	3	2	2	2	3	2	1	2	2	3	3	2	2	5
CO3	3	3	3	3	3	3	3	3	1	3	3	3	h	13	3	2
CO4	3	3	3	2	2	2	2	2	1	2	2	3	6	6	2	12
CO5	3	3	3	3	3	2	3	3	1	3	3	13	h	1	2	12

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: B 604 Microbiology

Unit No.	Topics	No. of Lectures	CO No.
I	General Microbiology - History of Development of Microbiology, Bacterial classification, Gram Negative Bacteria, Gram Positive Bacteria, & Archaea, Prokaryotic Structure & Function, Microbial Nutrition, Microbial Growth, Control of Microbes. Fundamentals of General Microbiology – Isolation of a broad range of non- pathogenic bacteria from natural sources, Selective and Enrichment techniques, Microscopic, biochemical, and molecular identification.	15	1
п	Bacterial Genetics -description of fundamental genetic processes such as mutation, repair, genetic exchange, recombination, and gene expression. Signal transduction in bacteria (Quorum Sensing in Gram positive & Gram-Negative Bacteria), Metagenomics.	10	2
ш	Prokaryotic Diversity - Structure, biochemical properties, and genetics of the major groups of prokaryotes. Microbial Ecology - various roles of microorganisms particularly bacteria and cyanobacteria in environmental processes, Microbial interactions, Aquatic Ecology, Terrestrial Ecology; food, industrial microbiology.	10	3
IV	Medical Bacteriology- Medically important bacterial pathogens in terms of the clinical, therapeutic, and epidemiological aspects of diseases caused by them, molecular mechanisms of pathogenesis, procedures for isolation and identification of pathogenic bacteria, testing their susceptibility to antibiotics. Bacterial cell-cell communications and biofilm formation, Strategies for bacterial adhesion and invasion, bioterrorism.	10	4
v	Medical Mycology and Parasitology- Consideration of medically important fungi and parasites, with emphasis on their biology in relation to disease and its laboratory diagnosis.	15	5

At 10.5.24 M

er.m

Protozoan infections: Introduction to protozoa, major pro	otozoan infections of
humans, Biology and pathogenesis of Plasmodium, p malaria, biochemical and cell biological similarities and d	ifferences with other
apicomplexa (Babesia,Cryptosporidium, Toxoplasma,	etc.), Biology and
pathogenesis of Toxoplasma, Leishmania, Trypanosoma	

1

BOOKS SUGGESTED:

S. No.	Author	Book
1	Thomas D Brock	Brock's Biology of Microorganisms
2	Patrick R Murray	Medical Microbiology: with STUDENT CONSULT Access
3	Willey, Joanne, Sherwood, Linda, Woolverton, Christopher J.	Presscotts Microbiology
4	Alfred E Brown	Benson's Microbiological Applications: Laboratory Manual in General Microbiology (Spiral-bound)
5	Ananthanarayan and Paniker Orient Blackswan	

Integrated M.Sc. Semester - VI

Program	Subject	Year	Semester			
integrated M.Sc.	Biology	3	VI			
Course Code	Course	Course Type				
H-601	Ethics of Scie	Ethics of Science and IPR				
Credit	Maria Barra H	ours Per Week(L-T-	P)			
	Let use 1	Т	P.			
2	2	2 0 CIA				
Maximum Marks	CI					
100	6	60				

Learning Objective (LO):

To introduce basic concepts of ethics and safety that is essential for Life Science Labs. To understand the procedures involved in protection of Intellectual property. To give an insight into different treaties signed. To gain knowledge about patent filing. The Intellectual Property Rights have two main objectives, firstly to promote the creation of intellectual property by providing incentives and secondly to promote the dissemination of the knowledge in intellectual properties by affording protection to its creators.

Course Outcomes (CO):

A 10.5.24

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Identify and analyze an ethical issue in the subject matter under investigation or in a relevant field. Identify the multiple ethical interests at stake in a real-world situation or practice.	U
2.	Analyze several contemporary ethical issues that arise in the practice of medicine from	An

4

2	multiple perspectives, including that of medical professionals, patients and society in general	
4	Identify criteria's to fit one's own intellectual work in particular form of IPRs	E
1.1.1	A patent provides a limited-term exclusive right to produce and market an invention in exchange for detailed information about that invention	Ap
5.	Distinguish and Explain various forms of IPP.	
CL: Co	ognitive Levels (R-Remember: U-Understanding: An-Apply: An-Apply: An-Apply: E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-	E

tember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

Dector Direct		and a	19:5-01-	PO	Os	特定なながり	和相当		11.22 412	19490	1. 1.1.2	2	PSC)	-
19910	2	3	4	5	6	7	8	9	10	111	r 1 HERR	2	3	4	15
3	3	3	2	2	1	2	1	3	2	2	3	li	2	2	3
3	3	3	2	2	1	2	1	3	2	2	3	1	5	2	2
3	3	3	2	2	1	2	1	3	2	5	2	- <u> -</u>	6	2	6
3	3	3	2	2	1	2	1	2	2	h	6	<u> </u>	-2	2	4
3	3	2	1	2	1		-	3	2	4	2	1	4	2	2
	1 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 4 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 1	1 2 4 5		POs 1 2 3 4 5 6 7 3 3 3 2 2 1 2 3 3 3 2 2 1 2 3 3 3 2 2 1 2 3 3 3 2 2 1 2 3 3 3 2 2 1 2 3 3 3 2 2 1 2								1 2 3 4 5 6 7 8 9 10 11 1 2 3 3 3 3 2 2 1 2 1 3 2 2 3 4 3 3 3 2 2 1 2 1 3 2 2 3 1 2 2 3 3 2 2 1 2 1 3 2 2 3 1 2 2

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: H 601 Ethics of Science and IPR

Unit No.	Detailed Syllabus: H 601 Ethics of Science and IPR Topics	No. of Lectures	CO No.
I	Introduction to Ethics- causes of unethical acts, Definition - moral, values, ethics; Role and importance of ethics in science; Professional ethics - professional conduct, Teaching ethical values to scientists, good laboratory practices, good manufacturing practices, Basic Approaches to Ethics; Posthumanism and Anti-Posthumanism.	6	1
п	Medical Ethics: Different themes pertaining to medical ethics including ethical issues in public health. Environmental Ethics, Bioethics, Journals and Publishers: Monopolistic practices by Academic Publishers. Plagiarism, softwares for plagiarism detection.	6	2
ш	Introduction to IPR; Types of Intellectual property – Patents, Trademarks, Copyrights and related rights; Traditional vs. Novelty; Importance of intellectual property rights in the modern global economic environment, Importance of intellectual property rights in India.	6	3
IV	Patents: Definition, patentable and non patentable inventions; types of patent application – Ordinary, Conventional, PCT, Divisional, and Patent of addition; Concept of Prior Art; Precautions while patenting disclosure / nondisclosure;	6	4
v	Case studies and agreements - Evolution of GATT and WTO and IPR provisions under TRIPS; Madrid agreement; Hague agreement; WIPO treaties; Budapest treaty; Indian Patent Act (1970)	6	5

BOOKS SUGGESTED:

0

S. No.		Author	Book	a a summer
1	David B. I	Resnik	The Ethics of Science: An Introduction', Routh York, 1998	edge, New
H.	of AM	A 10.5.24	Benger. M Height GI	fre

2 V. K. Ahuja	Intellectual Property Rights in India', 2015
3 V. K. Ahuja	Law Relating to Intellectual Property Rights', 2017.

	Integrated M.Sc.	Semester - VI				
Program	Subject	Year	Semester			
Integrated M.Sc.	Biology	3	VI			
Course Code	Cours	Course Type				
BL-601	Biology	Core				
Credit	In the second	-P)				
月二次 上的日子	L	Т	P			
3	-		6			
Maximum Marks		ESE				
100		60				

Learning Objective (LO): After completing the course the students should be able to Demonstrate practical skills in fundamental microbiological and immunology techniques.

Course Outcomes (CO):

No.	Expected Course Outcomes	CL				
12.34	At the end of the course, the students will be able to:					
a	Gain ability to culture animal cell culture and microscopic observation of Gross anatomy of the animal brain &Staining of mouse brain sections and wound Healing Assay	AP				
P	Develop expertise on various immunological assays like Differential Leucocyte count, Ag detection & Ab detection, Double diffusion, Radial Immunodiffusion, Total serum protein estimation, Estimation of glammaglobulins in serum, Determination of A:G ratio in serum sample	АР				
p	Deep understanding of Plant Physiology. Estimation of catalase, peroxidase, Indole Acetic Acid oxidase activity. Students will be able to isolate, differentiate and characterize photosynthetic pigments					
	Acquire hands on experience in media preparation, isolation and growth curve estimation along with mean generation time of microbes.	AP				
5 A	Ability to characterize microbes based on their ability to antibacterial sensitivity, ermentation test, Catalase activity and Amylase activity.	AP				

E's

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-A	Analyze; E-Evaluate; C-Create).
---	---------------------------------

PO CO	ACCEPTION OF STREET,	POs											PSO				
COI		2	3	4	5	6	7	8	9	10	11		2	3	4	5	
INT	3	3	3	2	3	1	3	2	-	2	2	3	3	2	2	2	
CO2	3	3	3	3	3	2	3 .	2	3	3	2	2	2	2	4	4	
CO3	3	3	3	2	2	6	2	2	1-	5	5	3	3	3	3	3	
CO4	3	3	2	5	2	2	-	4	-	2	2	3	3	2	2	2	
CO5	3	2	3	5	5	3	3	3	2	3	3	3	3	3	3	3	
the second s	1g:"2"-Mo	3	3	2	3	3	3	3	-	3	3	3	3	3	3	2	

CO-PO/PSO Mapping for the course:

5 -Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL601	Biology Laboratory
--------------------------	--------------------

S. No.	Experiment	No. of	C
I	Animal Physiology	Lab	No.
	 a) Animal cell culture and microscopy b) Gross anatomy of the animal brain & Staining of mouse brain sections c) Wound Healing Assay 	10	1
п	Immunology d) Differential Leucocyte count a) Ag detection & Ab detection b) Double diffusion c) Radial Immunodiffusion d) Total serum protein estimation e) Estimation of glammaglobulins in serum f) Determination of A:G ratio in serum sample	15	2
ш	 Plant Physiology a) Arabidopsis thaliana - model organism and its development b) Estimation of catalase activity in plant sample c) Estimation of peroxidase activity in plant sample d) Estimation of Indole Acetic Acid oxidase activity in plants e) Photosynthesis - floating leaf disc experiment under various conditions (light, dark & light - dark) f) Isolation and spectrophotometric characterization of photosynthetic pigments g) An improved method for the extraction and thin-layer chromatography of chlorophyll a and b from spinach. 	15	3
IV	Microbiology a) Media Preparation: Preparing and inoculating solid and liquid nutrient media for culturing microorganisms: Preparing nutrient media, Pouring nutrient agar plates and streaking bacterial culture on solid media, Inoculating nutrient broth with bacterial culture b) Growth Curve:Generating a bacterial growth curve under various pH and environmental conditions (steady and shaking); Calculations of Growth	10	4

W To:S.

0

22 St

Status -

the second second

	rate constant (µ); Calculation of generation time		
v	 c) Antibacterial activity testing d)Bacterial Fermentation test e)Isolation & Detection of coliform bacteria f) Catalase activity g) Amylase activity 	15	5

)

Integrated M.Sc. Semester - VII

Program	Subject	Subject Year						
Integrated M.Sc.	Biology	Biology 4						
Course Code	Cours	Course Title						
B-701	Evolution	Core						
Credit	Hours Per Week(L-T-P)							
	L	T	P					
4	3	1	0					
Maximum Marks	c c	ESE						
100		40						

Learning Objective (LO):

To understand and apply basic principles of the origin of life especially prokaryotes as well as eukaryotes in detail. To understand detailed outline of Extinctions and its types. To gain descriptive knowledge regarding Origin and Evolution of Man.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL			
1.	Studying the origin and earliest evolution of life, along with the long-term evolution of the Earth's environments, helps us understand why the Earth became habitable and why terrestrial life has persisted for billions of years	U			
2.	Understanding the role of genetic mechanisms in evolution.	U			
3.	In order to discern a particular critical aspect, learners must experience variation in the dimension of that aspect.				
4.	Understand how the link between environment and evolution. Understand how we can determine whether or not a population is evolving for a specific character. Be familiar with the different agents of evolution.				
5.	Students will be able to: identify the characteristics of primates. distinguish between humans and other primates. discuss three species of human ancestors				

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

POCO	BAR STR	Pos											PSO				
_	1	2	3	4	5	6	7	8	9	10	111	1	2	3	4	5	
COI	3	3	3	2	3	2	2	2	-	2	2	3	З	2	2	3	
CO2	3	3	3	2	3	2	2	2	-	2	2	3	3	2	2	2	
CO3	3	3	3	3	3	3	2	в	1	3	3	3	в	3	3	3	
CO4	3	3	3	3	3	3	2	в	2	3	3	3	в	3	3	3	
CO5	3	3	3	3	3	3	2	в	2	3	3	3	в	3	3	3	

CO-PO/PSO Mapping for the course:

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Unit No.	Topics	No. of Lectures	CO No.		
1	Origin of life: Historical theories and background information, Experimental approaches, Chemogeny, Biogeny, RNA and DNA world, evolution of proteins, origin of photosynthesis, evolution of eukaryotes. Lamarckism, Darwinism, pre- Darwinian and post-Darwinian period, Neo-Darwinism. Theories of organic evolution. Evidences of evolution.				
11					
ш	Polpulation genetics and evolution: Hardy-Weinberg Law (statement and derivation ofequation, application of law to human Population); Evolutionary forces upsetting H- W equilibrium. Genetic Drift (mechanism, founder's effect, bottleneck phenomenon); Role of Migration and Mutation in changing allele frequencies	10	3		
IV	Evolution above species level: Adaptation, adaptive radiation, microevolution, macroevolution, megaevolution, punctuated equilibria and related phenomenon. Isolation: Introduction and types of isolation. Speciation: species concept, modes of speciation: allopatric, sympatric	15	4		
v	Origin and evolution of man, Unique hominin characteristics contrasted with primate characteristics, primate phylogeny from Dryopithecus leading to Homo sapiens, Phylogenetic trees, Multiple sequence alignment, construction of phylogenetic trees.	10	5		

BOOKS SUGGESTED:

S. No.	Author	Book
1.	S. Freeman and J.C. Herron	Evolutionary Analysis, 4 th Edn., Benjamin-Cummings (2007)
2.	D.J. Futuyma	Evolution, 2 nd Edn., Sinauer Associates Inc.(2009)

	Integrated M.Sc.	Semester - VII				
Program	Subject	Year	Semester			
Integrated M.Sc.	Biology	4	VII			
Course Code	Course	e Title	Course Type			
B-702	Immunology-II (Im	Immunology-II (Immunity and Disease)				
Credit	The second s					
		T	P			
4	3	1	0			
Maximum Marks	C	IA	ESE			
100	6	60	40			

•

Learning Objective (LO):

The objective of this course is to enable students to understand the fundamental principles of immunology and to develop an appreciation of the importance of synthesizing key concepts from a vast amount of experimental data that is rapidly emerging in this field.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	The host gene array complements to the parasite gene array and studying the host cell undergoing infection, transcription profiling, growth latency, and mortality gives a clear idea about the development and survival of parasites in the host cell	An
2.	To explain the function of structures of bacterial cells that is important for causing disease.	E
3.	Identify, describe and contrast unicellular parasites and parasitic worms. Describe specific human and non-human parasitic diseases.	Ε
4.	Health and Hygiene Learning Outcomes Key Concepts Students will be able to - Concept of Allergy - define the terms allergy and allergens, and differentiate between them	Ар
5.	Learning about the immune system malfunctions, it mistakenly attacks healthy cells, tissues, and organs	Ε

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	169	POs										PSO				
	1001	2	3	4	5	6	7	8	9	10	11	間	2	3	4	5
CO1	3	3	3	2	2	1	2	2	1	2	2	3	2	1	1	2
CO2	3	3	3	2	3	2	2	1	-	2	2	3	2	2	2	2
CO3	3	3	3	2	3	2	2	1	-	1	2	3	2	1	2	2
CO4	3	3	3	2	3	1	2	1	2	1	2	3	2	1	1	2
CO5	3	3	3	2	3	2	2	1		2	1	3	2	2	1	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Unit No.	Detailed Syllabus: B 702 Immunology-II (Immunity and Disease) Topics	No. of Lectures	CO No.
I	Host-Pathogen relationship Diseases caused by Viruses and the immune response to them- HIV and AIDS-immune responses	10	1
II	Bacterial diseases – and the immune response to bacteria Vaccines- mechanisms, types of vaccines	15	2
III	Parasites – protozoan parasites, parasitic worms and the immune response to them- eg malaria, leishmaniasis, worm infestations	10	3
IV	Immediate Hypersensitivity and allergy, anaphylaxis Hypersensitivity and chronic inflammatory diseases- tuberculosis and leprosy Cancer immunology	15	4
v	Autoimmune diseases- generalized- SLE, Rheumatoid arthritis; localized- multiple sclerosis, Diseases due to immune cross reactivity- Rh incompatibility, transfusion, transplantation, Inherited immune diseases	10	5

II (Immunity and Disease)

BOOKS SUGGESTED:

S.No.	Author	Book					
1.	Charles A Janeway, JP Travers, Mark Walport and Mark J Shlomchik	Immunobiology, 5th edition; The Immune System in Health and Disease					
2.	Baron S, Galveston	Medical Microbiology; 4th Edition; University of Texas Medical Branch at Galveston					
3.	RA Goldsby et al.	Kuby's Immunology					
4.	E Benjamini, R Coico and G Sunshine	Immunology- A short Course					
5.	Roitt, Brostoff and Male	Immunology					

Integrated M.Sc. Semester - VII

Program	Subject	Year	Semester				
Integrated M.Sc.	Biology	4	VII				
Course Code	Cours	e Title	Course Type				
B-703	Developme	ental Biology	Core				
Credit	Hours Per Week(L-T-P)						
	L	T	Post				
4	3	1	0				
Maximum Marks		CIA	ESE				
100	data water are a management	60	40				

Learning Objective (LO):

Developmental biology aims to understand how an organism develops-how a single cell becomes an organized grouping of cells that is then programmed at specific times to become specialized for certain tasks. Describe levels of organization and related functions in plants and animals.

Course Outcomes (CO):

CO No.	Expected Course Outcomes	CL
1.	At the end of the course, the students will be able to: They can analyse variations at different stages of embryonic development and distinguish between healthy and pathological tissues in specimens.	Ап
2.	Distinguish the stages of embryonic development that occur before implantation. Describe the process of implantation.	U
3.	The organ systems contribute to the body anatomy and morphology of an organism, therefore organogenesis plays a significant role in the development of an organism.	U
4.	Describe the function of stem cells in plants and animals and potential benefits and risks of using stem cells in medicine. Outline how cell fractionation can be used to study the components of cells.	Ap
5.	Students will be able to identify plant vegetative and reproductive structures. Students will understand basic principles, processes and functions of plant growth and reproduction	Ap

P

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		No. St. J.		and a state	PO	S	118150		Contained	120707	A THE	19254		PSC		Anna an Anna
001	10	2	3	4	5	6	7	8	9	10	11	1	12	3	4	5
CO1	3	3	3	2	2	2	2	2	2	2	2	3	b	2	2	5
CO2	3	3	3	2	2	2	2	2	2	2	6	2	6	-	2	4
CO3	3	3	3	2	3	2	2	6	1	2	6	5	4	4	2	2
CO4	3	3	3	3	2	1	2	6	1	5	2	3	2	2	2	3
CO5	12	2	2	2	5	1	3	5	2	3	2	3	з	3	3	3
A COLORADOR NO.	5	P	3	3	3	2	3	β	2	3	2	3	3	3	3	3

Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: B 703 Developmental Biology

Unit No.	Topics	No. of	CO
1	Basic concepts of molecular regulation of development: Transcription factors in differential gene expression; morphogens and axis formation; autocrine and paracrine regulation. How cell proliferation, apoptosis, and fate specification determine developmental processes. Fertilization: Structure of oocytes and spermatocytes. The process of fertilization.	Lectures 10	<u>No.</u> 1
п	Comparative study of early embryonic development: (Caenorhabditis elegans, amphibians, birds, and mammals), Cleavage formation, Gastrulation, Axis formation: Signaling cascades and molecular understanding of anteroposterior, mediolateral, and dorsoventral axes development.	15	2
Ш	Organogenesis in vertebrates: Germ layer formation. Regulation of formation of the somites, heart, kidney, blood vessels, and limb. Changes in circulation pattern between fetus and newborn.Metamorphosis and regeneration process: Hormonal control of metamorphosis in amphibians and insects; wing imaginal disc formation in drosophila. Regeneration in planeria and that of vertebrate limb.	15	3

2/20

Dr

4gres

0 (. 24

Ĩ

IV	Stem cells: Concepts of totipotent, pluripotent, and multipotent cells. Factors regulating "stemness" of a cell. Embryonic vs. adult stem cells. Sources of stem cells in vertebrates and their applications. Developmental disorders and aging: Regulatory role of genetic and environmental factors. Role of carcinogens and teratogens.	10	4
v	Development processes in plants: How are the mechanisms different from that of animal development? Gametogenesis, pollination, and fertilization processes in angiosperms. Plant embryogenesis, tissue differentiation, Hormonal regulation of seed dormancy and the process of germination. Meristems in plant development, Root and shoot development mechanisms. Reproductive phase: photoperiod sensitivity and molecular regulation of flowering process. Host-Pathogen relationship Diseases caused by Viruses and the immune response to them- HIV and AIDS-immune responses	10	5

BOOKS SUGGESTED:

S. No.	Author	Book
1.	Alberts et al.	Molecular Biology of the Cell
2.	SF Gilbert	Developmental Biology
3.	Lewin Benjamin	Gene VIII
4.	PO Moody	Introduction to Evolution, 1970
5.	Dobzhansky et al.	Evolution, W. H. Freeman, New York

Program	Subject	Semester				
ntegrated M.Sc.	Biology	4	VII			
Course Code	Course	Title	Course Type			
B-704		Imaging Technology in Biological Research				
Credit	Hours Per Week (L-T-P)					
	Les I	T	P 0			
4	3	1				
Maximum Marks	C	ESE				
100	6	60				

Learning Objective (LO): This paper gives an insight of different imaging techniques used in biological research.

D

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Define and explain the propagation of light in conducting and non-conducting media; define and explain the physics governing laser behaviour and light matter interaction; apply wave optics and diffraction theory to a range of problems;	Ар
2.	Understand why and how the light microscope and electron microscope are used in biology	An
3.	Can analyze and understand NMR pulse sequences using basic NMR theory. master relevant academic tools and techniques in data recording and interpretation of NMR spectra.	Е
4.	Imaging is a range of tests used to create images of parts of the body.	Ар
5.	Demonstrate the ability to use discipline specific research techniques.	C

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	No. 40	12 Jak	and a state	(dicyst)	PO	s	6.72	in the	No.	CENTRAL PARTY	- Street	120.770	a dia	PSC) 19103	200 (an 19
	5% 1 H	2	3	4	5	6	7	8	9	10	11	11	2	3	19514	5
CO1	3	3	3	2	3	3	3	2	1	3	2	3	3	2	2	2
CO2	3	3	3	2	3	3	3	2	2	3	2	3	3	2	2	2
CO3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: B 704 Imaging Technology in Biological Research

Unit No.	Topics	No. of Lectures	CO No.
I	The power of ten (understanding how small cells and the sub-cellular contents are). An introduction to light and optics, exploring with lenses (what are lenses, looking through them, understanding the concept of magnification, mirrors, angles of reflection, refraction, prisms and colors)	10	1
Ш	Fundamentals of illumination (ray diagrams, types of light sources, LEDs, power levels, coherence of light, elliptical reflectors) Exploring microscopes (short history, magnifying glass, simple and compound microscopes, electron Microscopes, stereomicroscope)	10	2
ш	Fluorescence microscopy (Understanding fluorescence, Fluorescence protein technology, GFP, YFP), two-photon fluorescence microscopy, matrix-assisted laser desorption/ionization mass spectrometry (MALDIMS) imaging	15	3
IV	Live cell imaging (confocal microscopes), Differential interference contrast (DIC) images Comparing Confocal and Widefield Fluorescence Microscopy, Atomic force microscopy and optical tweezers force spectroscopy	15	4
v	NMR Imaging Spatially nonresolved NMR spectroscopy; low-field NMR instruments; 1H-nuclear magnetic resonance (NMR) microimaging; 1H-magic angle spinning NMR spectroscopy; MAS-13C NMR spectroscopy, Spectral-	10	5

5.24

.

S No	S SUGGESTED:	
	Author	Book
1.	Ulf Grenander, Y Chow and Daniel M Keenan	Hands: A Pattern Theoretic Study of Biological Shapes (Research Notes in Neural Computing) (Volume-2) Alberts <i>et al.</i>
2.	Valery V Tuchin, Lihong Wang and Dmitry A Zimnyakov	Optical Polarization in Biomedical Applications (Biological and Medical Physics, Biomedical Engineering)
3.	RM Lambrecht	Biological Models in Radiopharmaceutical Development (Developments in Nuclear Medicine)
4.	Philippe Sansonetti	Bacterial Virulence: Basic Principles, Models and Global Approaches (Infection Biology (VCH)
5.	Richard Nuccitelli, Leslie Wilson and Paul T Matsudaira	A Practical Guide to the Study of Calcium in Living Cells, Volume 40 (Methods in Cell Biology)

Integrated M.Sc. Semester - VII

Program	Subject	Year	Semester			
Integrated M.Sc.	Biology	4	VII			
Course Code	Course	Title	Course Type			
BL-701	Advanced Biol	Advanced Biology Laboratory				
Credit	Hours Per Week (L-T-P)					
1. 推荐 建制 四	L	Т	P			
5	-		10			
Maximum Marks	C	CIA				
100	6	40				

Learning Objective (LO):

Γ

Key goal of experiments is to understand and perform various immunological techniques. Study of developmental stages of plants and factors affecting their growth. Researchers also get the information of different bioinformatics tools and their applications.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
	Different immunological tests like Serum Electrophoresis, ELISA - direct &indirect, Widal – Tube & Slide, Immunoelectrophoresis, Rocket immunoelectrophoresis, VDRL	

2	Understanding the factors affecting growth in plants. Preparation of MS media and Callus formation from explants.	AP
3	Study of effects of phytohormones on plant growth development and germination patterns under stress and normal conditions. Synthetic seed preparation	AP
4	Silver Nanoparticle synthesis from plant extract using Soxhlet method and Phytochemical tests	AP
5	A deep understanding bioinformatics tools sequence analysis using BLAST; sequence pattern, motifs and profiles. Prediction of secondary structure of proteins Prediction of tertiary structure (fold recognition, homology search) Molecular modeling and dynamics	АР

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	- allowed		Persiany dillo	Revealer	PO	s	10.1	College College	15.35			107 and	Setter 1/2	PSO	· 新教書	NO MARK
FUCU	102 1	12	3	4	5	6	7	8	9	10	11	219	2	3	4	5
CO1	3	3	3	2	3	2	2	2	2	2	2	3	2	2	2	3
CO2	3	3	3	2	3	2	2	2	2	2	2	3	2	2	2	3
CO3	3	3	3	2	3	2	2	2	2	2	2	3	2	2	2	3
CO4	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL701 Advanced Biology Laboratory

S. No.	Experiment	No. of Lab	CC No.
I	Immunology a) SerumElectrophoresis b) ELISA - direct & indirect c) Widal – Tube & Slide d) Immunoelectrophoresis e) Rocket immunoelectrophoresis f) VDRL	18	1
II	Developmental Biology a) Preparation of MS media b) Callus formation from carrot cells c) In vitro culture methods	12	2
III	Study of effects of phytohormones on plant growth development a) Auxins b) Cytokinins	15	3
IV	Study of germination patterns under stress and normal condition	18	4
IV	Study of germination patterns under stress and normal condition	18	Ļ

	 a) Temperature b) Salinity c) pH d) Heavy metals 		
v	Synthetic seed preparation a) In vitro conservation methods b) Effect of temperature c) Effect of osmotic agents	12	5

Integrated M.Sc. Semester - VIII

Program	Subject	Year	Semester				
ntegrated M.Sc.	Biology	4	VIII				
Course Code	Course	Title	Course Type				
B-801	Vire	ology	Core				
Credit	Hours Per Week (L-T-P)						
	L	Т	P				
4	3	° 1	-				
Maximum Marks	c	IA	ESE				
100	6	0	40				

Learning Objective (LO): It will provide understanding of different types of viruses, their structure, mode of replication. It will also provide understanding of various therapies in case of viral infections.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1	Students will be able to comprehend the various concepts regarding Origin, architecture and nomencleture of the viruses. Replication mechanism and mode of transmission of viruses	U
2	Development of vaccines for the viral epidemics and also about antiviral chemotherapy.	L
3	Virus genetic structure and their mode of replication	U
4	Evolution of viruses and some serious infectious viruses such as HIV, Herpes and Pox virus	U
5	Study of bacteriophages, mode of replication and other infectious viruses	U

CL:CognitiveLevels(R-Remember;U-Understanding;Ap-Apply;An-Analyze;E-Evaluate;C-Create).

	1	2	3	11	PC	S	-	加加		A ROAD		120		PSC		1.022
COI	3	3	3	2	3	6	7	8	9	10	11	1	2	3	4	
CO2	3	3	2	2	5	2	2	2	2	2	2	3	2	2	2	3
CO3	3	12		3	3	3	3	З	2	3	3	3	3	3	3	2
CO4	2	2	3	3	3	3	3	3	2	3	3	3	3	3	3	6
CO5	12	3	3	3	3	3	3	3	2	3	3	3	13	2	2	6
the state of the state of the state	3	3 "2"–Mo	3	3	3	3	3	3	2	2	2	2	6	2	3	2

CO-PO/PSO Mapping for the course:

-Low;"-"No Correlation

Detailed Syllabus: B -801: Virology

Unit			
No.	Detailed Syllabus: B -801: Virology Topics	No. of Lectures	CO No.
	Introduction to Virology: definition, properties and origin of viruses, Virus architecture and nomenclature, Virus replication cycle, Basic virological methods, Basics of virus entry, spread and transmission	12	1
п	antiviral chemotherapy: the prevention and treatment of viral diseases, Epidemiology, Exploiting viruses as going therapy	15	2
m	other single-stranded positive-strand RNA viruses, Polioviruses and single-stranded nonsegmented negative-strand, Influenza viruse and ther single-stranded segmented negative-strand RNA viruses.	12	3
IV	(nuclear large double-stranded DNA viruses), Poxviruses (cytoplasmic large double-stranded DNA viruses), Poxviruses (cytoplasmic	10	4
v	Hepatitis B virus (reverse-transcribing DNA virus) and other viruses causing hepatitis, Prion diseases, Plant viruses, Bacteriophages	11	5

Books Recommended:

A. C.24

S.No.	Author	Book
1	L Collier, J Oxford and Paul Kellam	Human Virology (4 th edition),
2	SJ Flint, LW Enquist, VR Racaniello and AM Skalka	Principles of Virology (3rd edition) 2009
3	AJ Cann	Principles of Molecular Virology,
4	Teri Shors, Jones and Bartlett	Understanding Viruses
5	NJ Dimmock, A Easton, K Leppard	IntroductiontoModernVirology6thedition

S.L. 5

1 Children of the local state of	Integrated 1	M.Sc. Semester - VIII	(¹
Program	Subject	Year	Semester
Integrated M.Sc.	Biology	4	VIII
Course Code	Course	e Title	Course Type
B-802	BIOTECHN	Core	
Credit	100000000000000000000000000000000000000		
Section Print Print	L	T	Р
4	3	1	0
Maximum Marks	all a state of the second	IA	ESE
100		60	40

Learning Objective (LO):

It will give an overview of the basic biotechnology techniques, rDNA technology, PCR, Blotting and plant tissue culture technique.

Course Outcomes (CO):-

CO No.	Expected Course Outcomes Attheendofthecourse,thestudentswillbeableto:	CL
1	 Students will have in –depth understanding of Basic principles of genetic engineering. Transgenic animals, cloning and applications Development of transgenic plants and their applications. 	U
2	Different molecular techniques such as library construction, vector designing etc.	L
3	Learning hybridization techniques, sequencing and gene transfer methods	
4	Study of trangenics plants and animals and gene therapy	L
5	Tissue culture techniques, cloning, micropropagation techniques	L
Cogniti	veLevels(R-Remember:U-Understanding: An-Apply: An Apply: Appp: Apply: Ap	L

CL: CognitiveLevels(R-Remember;U-Understanding;Ap-Apply;An-Analyze;E-Evaluate;C-Create).

(.24

CO-PO/PSO Mapping for the course:

POCO	ANE TO A	CALL VI	27 41.28	and the	PC)s	S. Cristin	01126	ALC: NO	NOTE	-	and and and a	-	DCO		
	樹加	2	3	4	5	1.	17	1 0	1 0	10	1	10.00		PSC	出现140	124-27
COI	1	12	2	12	1	0	1	0	9	10	11		2	3	4	5
	5	5	3	3	3	3	3	2	2	3	3	3	3	2	3	12
CO2	3	3	3	3	3	3	3	þ	2	2	2	12	6		5	Ρ
CO3	3	3	3	12	12	12	12		-	5	5	b	P	3	3	3
	1		5	3	3	3	3	2	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	12	h		-	-
COS	3	3	1	12	12	12	12	-	2			5	P	3	3	2
		5	5	P	3	p	3	3	2	3	3	3	3	3	3	2

б.

	Detailed Syllabus: B -802: Biotechnology-I	No of	CO
Unit	Topics	lectures	
<u>Unit-I</u>	Basic concept of genetic engineering, Methods for creating recombinant DNA molecule, properties of restriction endonucleases and their mode of action, Cloning Vectors- Lambda phage, Plasmid, M13 phage, cosmid, yeast, viral and Expression vectors, YACs, BACs, PACs. Introduction of DNA into living cells and selection of recombinants.	10	1
<u>Unit II</u>	Construction of DNA library:Genomic libraries: Partial digest, choice of vectors, construction and evaluation of a genomic library, growing and storing libraries,cDNA Library: methods of generating cDNA library, Genomic vs cDNA library, Expression libraries	10	
<u>Unit-III</u>	Selection/screening: Analysis of genomic DNA by Southern hybridization, Northern and Western blotting techniques, Restriction mapping, DNA sequencing and analyses techniques, next gen sequencing, microarray technology. DNA manipulation techniques: Preparation of radiolabelled and synthetic probes, Amplification of D NA by polymerase chain reaction, Site directed mutagenesis, Gene transfer methods for a nimals and plants	15	3
<u>Unit-IV</u>	Transgenicanimals/plants- selectable markers, Reporter genes for promoter analysis, Embryonic stem cells, Super mouse,Pronuclear Transgenic Goats, Wh ole animal cloning e.g. Dolly, gene Knock-out, knock-down, knock- in technology, Gene therapy e.g. SCID] Agrobacterium mediated transformation in plants, Ti plasmid.	10	4
<u>Unit-V</u>	Cell and tissue culture in plants and animals: Primary culture; Cell line; I clones; Callus cultures; Somaclonal variation; Micropropagation; Soma embryogenesis; Haploidy; Protoplast fusion and somatic hydridization; rides; Artificial seeds; Hybridoma technology.	15	5

Books Recommended:

S.No.	Author	Book
1	Benjamin Lewin	Gene VII, Oxford Publishers
2	T A Brown	Genome, Second edition,
3	Old and Primrose	Principles of Gene Manipulation;
4	Simmons and Gardner	Principles of genetics;
5	Donald Voet and Judith Voet	Biochemistry 3 rd Edition,
6	T D.Watson and others	Molecular Biology of the Gene, 6th Edition
7	GM Cooper	The Cell: A molecular approach: Library of Congress cataloging in publication data.

Ht 10.5.24 76

4

8	Griffiths A and Miller J	Anintroductiontogeneticanalysis;Freeman
9	Lodish H and Berk	A Molecular cell biology;
10	Sambrook J, Russell	Molecular cloning:- Vol I, II, III; CSHL Press
11	TA Brown	Gene cloning and DNA analysis;
12	BGlick, JPasternak & CPatten	Molecular Biotechnology- principles and applications of Recombinant DNA, 4th
13	K. Deb and Satish Totey	Stem Cells Basics and Applications;
14	Gary Stein and Maria B et al.	Human Stem Cell Technology and Biology;

Integrated M.Sc. Semester - VIII

Program	Subject	Year	Semester
ntegrated M.Sc.	Biology	4	VIII
Course Code	Course	Title	Course Type
B-803	BIOINFOR	Core	
Credit			
	L	Τ	Р
4	3	1	0
Maximum Marks	C	IA	ESE
100	6	50	40

Learning Objective (LO): It will give an overview of fundamentals of bioinformatics, databases and different tools BLAST FASTA. Application of these tools for understanding biological molecules.

Course Outcomes(CO):-

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1	Students will have in -depth understanding of History, definition, importance and applications of Bioinformatics, Bioinformatics and computational Biology opportunities in India. Major Bioinformatics Resources	L
2	Introduction of Biological Database	L
3	Basics and techniques of alignment, Phylogenetic Analysis, Algorithms /methods of phylogenetic analysis	
4	Protein structure analysis and prediction, Fundamentals of the methods for 3D structure prediction, sequence similarity/identity of target proteins of known structure, fundamental principles of protein folding	!
5	Genomics and Functional Analysis Methodologies for high throughput analysis including, Drug discovery and Development, Applications of Bioinformatics, CognitiveLevels(R-Remember;U-Understanding;Ap-Apply:An-Analyze;E-Evaluate:C. Croste)	Ap

Spor

An-Analyze; E-Evaluate; C-Create).

5.24

POCO	1000	POs										PSO					
COL	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	
CO1	3	3	3	3	3	3	3	3	1	2	2	2	2	2	3	2	
CO2	3	3	3	3	3	2	2		2	3	3	5	2	5	2	6	
CO3	3	3	3	3	2	5	3	3	2	3	3	3	3	3	3	2	
CO4	2	2		5	3	3	3	3	1	3	3	3	3	3	3	1	
CO5	5	3	3	3	3	3	3	3	1	3	3	3	3	3	3	2	
Contraction and Contraction	3	3 "2"-Ma	3	3	3	3	3	3	2	3	3	3	3	3	3	1	

CO-PO/PSO Mapping for the course:

-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 803 Bioinformatics

Unit	Detailed Syllabus: B 803 Bioinformatics		
	Topics	No of lectures	CC
<u>Unit-I</u>	Introduction to Bioinformatics: Bioinformatics - History, definition, importance and applications of Bioinformatics, Bioinformatics and computational Biology opportunities in India. Major Bioinformatics Resources: NCBI, EBI, ExPaSy	10	1
<u>Unit II</u>	Biological databases- Introduction of Biological Databases; (a) Nucleic acid databases (NCBI, DDBJ, and EMBL). (b) Protein databases (Primary, Composite, and Secondary)(c) Specialized Genome databases: (SGD, TIGR, and ACeDB) (d) Structure databases (CATH, SCOP, & PDBsum)	10	
<u>Unit-</u> <u>III</u>	Alignment: Basics and techniques, Local alignment and Global alignment, Pairwise sequence alignment:NEEDLEMAN and Wunsch algorithm, Smith and Waterman algorithm, The Dot Plot.Multiple Sequence Alignment (MSA): Definition, Objective, Methods for MSA: Heuristic approach, Dynamic programming approach and their combinations. database similarity searches-BLAST/FASTA algorithms, Phylogenetic Analysis: Phylogenetic-trees, Terminology of tree- reconstruction, rooted and un-rooted trees, gene vs species trees and their properties. Algorithms /methods of phylogenetic analysis: UPGMA, Neighbor-Joining Method.	15	3
Unit-IV	Protein structure analysis and prediction: Identification/assignment of secondary structural elements from the knowledge of 3-D structure of macromolecule using DSSP and STRIDE methods, Prediction of secondary structure: PHD and PSI-PRED method Tertiary (3-D) Structure prediction: Fundamentals of the methods for 3D structure prediction (sequence similarity/identity of target proteins of known structure, fundamental principles of protein folding etc.)	15	4
<u>Jnit-V</u>	Genomics and Functional Analysis Methodologies for high throughput analysis including NGS, application of bioinformatics in genomics. Comparative genomics. Drug discovery and Development : Introduction to Drug Design and Development, Drug targets, Lead Identification and Modification,	10	5

A. 5

	Computer-Aided Drug Design, Drug Delivery, Applications of	T
	Bioinformatics: Pharmaceutical industries, immunology, agriculture.	
_	forestry; Legal, ethical and commercial ramifications of bioinformatics.	

Books Recommended:

S.No.	Author	Book					
1	E Wayne W Daniel	Biostatistics: A foundation for Analysis in the Health Sciences					
2	Prem S Mann	Introductory Statistics. 5th Edition;					
3	Olive Jean Dunn	Basic Statistics: A primer for Biomedical Sciences					
4	C Stan Tsai	Computational Biochemistry;					
5	SC Rastogi et al.,	Bioinformatics-Methods and Applications					
6	A Caldwell et al.,	Integrated Genomics; Wiley Publishers					

Integrated M.Sc. Semester - VIII

Program	Subject	Year	Semester
ntegrated M.Sc.	Biology	4	VIII
Course Code	Course	Title	Course Type
B-804	BIOTECHNO	Core	
Credit			
	L	T	Р
4	3	1	0
Maximum Marks	C	A	ESE
100	6	0	40

Learning Objective (LO): It will give an overview of industrial, medical, environmental biotechnological processes. It will also provide concept regarding ethical concerns of GM crops.

Course Outcomes (CO):-

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1	Principles of plant breeding, Important conventional methods, Ethics of GM crops and animal cloning, Plant diseases and defensive mechanisms, Bioprocess, Technology, basics of bioprocess.	U
2	Bioprocess Technology, basics of bioreactor kinetics and mathematical equations, Kinetics of microbial growth Solid state fermentation.	U
3	Industrial Biotechnology, Biopolymers	
4	Remediation and Biotechnology that the	L
\cap	remediation and Biotechnology their health effects, Solid waste	U

10. W.M

.24
	management, Environmental and industrial pollution control	1
5	Medical Biotechnology, Tissue Engineering and applications, Biomaterialsand applications, Introduction to nanotechnology and nano-	
	biotechnology, Nanomaterials and their uses.	

CL:CognitiveLevels(R-Remember;U-Understanding;Ap-Apply;An-Analyze;E-Evaluate;C-Create).

CO-PO/PSO Mapping for the course:

107 20	Section 1	in and	1	PO	S	Terral Co					25.000	1000	130	-	TC
1	12	3	4	1 5	11	7	8	9	10	11	111	2	3	4	3
3	2	3	3	3	3	3	2	2	3	3	3	3	2	3	3
2	12	3	12	3	3	3	6	2	3	3	3	3	3	3	3
2	2	2	2	3	13	3	2	2	3	3	3	3	3	3	3
2	p	2	2	2	2	2	3	2	3	3	3	3	3	3	3
3	3	3	5	5	5	5	6	2	2	2	2	h	3	3	2
	1 3 3 3 3	1 2 3 3 3 3 3 3 3 3 3 3	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	POs 1 2 3 4 5 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	POs	POs	POs	POs	POs	POs		POs 130	POs 130

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

10.5.24

Detailed Syllabus: B 804: Biotechnology-II

	B -804: BIOTECHNOLOGY II	No of lectures	CO
<u>Unit-I</u>	Principles of plant breeding: Important conventional methods of breeding self and cross pollinated and vegetatively propagated crops; Non-conventional methods; Polyploidy: Genetic variability; Plant diseases and defensive mechanisms. Ethics of GM crops and animal cloning. Model organisms - S. cereviceae, Dictostylium, Caenorhabditis elegans, Arabidopsis, Zebra Fish, Mouse, Drosophila		1
Unit II	Industrial Biotechnology-I Bioprocess Technology [basics of bioreactor kinetics and mathematical equations regarding bioreactors, scale-up and aeration of bioreactors in detail, Kinetics of microbial growth, substrate utilization and product formation: Batch, Fed- Batch and continuous processes, Scale up concepts with respect to fermenter design and product formation, Gas exchange and mass transfer: O2 transfer, critical oxygen concentration, determining the oxygen uptake rate, Solid state fermentation.	15	
<u>Unit-</u> III	Industrial Biotechnology-II Downstream Processing - Flocculation and floatation, Filtration, Centrifugation, Cell disruption, Liquid extraction, Precipitation, Adsorption, Dialysis, Reverse osmosis, Chromatography, Crystallization and drying, Common examples: Biopolymers	10	3
<u>Unit-IV</u>	Remediation and Biotechnology- Biodegradation of xenobiotic compound. Priority pollutants and their health effects, Microbial basis of biodegradation, Bioremediation (phyto and metal), Environmental and industrial pollution control, Biopesticides, Microbial plastics, Solid waste management	10	4

Q. en in

hill and

L

<u>Unit-V</u>	Tissue Engineering -Growth Factors and morphogens: signals for tissue engineering and whole organ development, extracellular Matrix: structure, function and applications to tissue engineering, Cell adhesion and migration, Inflammatory and Immune responses to tissue engineered devices b. Biomaterials -Polymeric scaffolds, Bio mimetic materials, Nanocomposite scaffolds	15	5
	Introduction to nanotechnology and nano-biotechnology, Nanomaterials and their uses.		

Books Recommended:

4

1	R.IanFreshney, GlynN.Stacey, Jonathan M. Auerbach	CultureofHumanStemCells.JohnWiley&Sons				
2	BernardRGlick, JackJPasternak, Cheryl L Patten	Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press				
3	Robert Lanza, Robert Langer, Joseph P Vacanti	Principles of Tissue Engineering				
4	F Gilbert	Developmental Biology; 6th Edition;				
5	Gordana Vunjak-Novakovic, R Ian Freshney	Culture of Cells for Tissue Engineering;				
6	SB Primrose and Twyman	Principles of gene manipulation				
7	RW Old and SB Primrose	Principles of gene manipulation				
8	Watson	Recombinant DNA				
9	TA Brown	Gene cloning and DNA analysis				
10	D Clark, N Pazdernik	Bioprocess Technology- Biotechnology- Applying the genetics to revolution				

Integrated M.Sc. Semester - VIII

Program	Subject	Year	Semester			
ntegrated M.Sc.	Biology	4	VIII			
Course Code	Course	Course Title Advanced Biology Laboratory				
BL-801	Advanced Biol					
Credit	H	ours Per Week (L-T-I	P)			
	L	T	P			
5		•	10			
Maximum Marks	C	CIA				
100	6	40				

Learning Objective (LO): Key goal of experiments is to understand and perform various techniques to for the synthesis and application

A 5.24

10

of nanoparticles. Extraction and estimation of phytochemicals and applications of different bioinformatics tools.

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	AD
1	Techniques for the synthesis of nanoparticles from plant sources and	АР
2	optimization. Experiments are designed to learn the techniques to extract phytochemicals by different methods.	AP
3	Observation of plant growth and study of different chemical stress on plant growth.	AP
4	Different biochemical tests for the detection of plant compounds.	AP
5	Applications of different bioinformatics tools to retrieve the data from different biological databases.	AP

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create,

CO-PO/PSO Mapping for the course:

POCO	T	POs									1	PSO				
POLO	1	12	3	14	15	6	7	1	9	10	11	1	2	1	4	5
001	3	3	3	3	3	3	3	3	2	3	þ	p	p.	þ	3	2
CO2	3	3	3	2	3	2	3	2	2	2	2	9	C4	2	2	2
CO3	3	3	3	2	3	2	3	2	2	2	2	þ	-	2	2	2
CO4	3	3	3	2	3	2	3	2	2	2	-	þ	24	2	2	2
COS	3	3	3	3	3	3	3	3	2	3	þ	3	þ	3	3	2

"3"-Strong:"2"-Moderate;"1"-Low;"-"No Correlation

At Can

Detailed Syllabus: BL801 Advanced Biology Laboratory

S. No.	Experiment	No. of Lab	CO No.
1	Silver Nanoparticle synthesis from plant extract. Silver Nanoparticle synthesis from tea extract	18	t
13	Preparation of plant extracts using soxhlet method and phytochemical tests	12	2
111	Effect of salt and metal stress on plant growth	15	3
IV	Plant biochemical tests- total protein, profine etc. Essential oil extraction from aromatic plants	18	4
v	Bioinformatics: DNA sequence analysis using BLAST, sequence pattern, motifs and profiles. Prediction of secondary structure of proteins Prediction of tertiary structure of (fold recognition, homology search) Mexicolar modeling and dynamics, using small obgenucleotides and small protein	12	5

Dug

2

with known crystal structure (available from data bank), Drug designing -
ing available data Applications of bio informatics, Primer designing.

Integrated M.Sc. Semester - IX

Program	Subject	Year	Semester			
Integrated M.Sc.	Botany	5	IX			
Course Code	Course	Title	Course Type			
BPGD901	Biology PG Diss	Core				
Credit	Hours Per Week (L-T-P)					
	L	T	Р			
20	-		0			
Maximum Marks	CI	ESE				
100	60	60				

Scheme for evaluation of Project/Dissertation work for 9th semester CBS

The Center for Basic Sciences (CBS) offers 5 Year Integrated M.Sc. program (total credits-240) in subject Biology. The complete program is for duration of 10 semesters. Each semester from 1-VIII carries 25 credits and semester IX to X will carry 20 credits each. As per the course structure of Int M.Sc. 9th semester, students have to carry out a project/Dissertation in their respective subjects for successful completion of the program.

The project has to be carried out in recognized National/State laboratories/Institute/Universities.

The	proposed evaluation scheme for Integrated M.Sc. 9th semester	er projecto/Discontación
Biol	ogy (BPGD 901) is as follows:	in projects/Dissertation in subject
1		Marks
2	Project/Dissertation (certified by the supervisor of the Institute)	150

The valuation of all the projects/Dissertation will be done by the external examiner, internal exam	
the respective subjects and Director (CBS) or nominee of the Director.	iner of

3

Seminar based on Project/ Dissertation

Total Marks

Viva-Voce based on Project report/ Dissertation and Seminar

.w.v

150

100

400

	Integrated M.Sc.	Semester – X	
Program	Subject	Year	Semester
Integrated M.Sc.	Biology	5	X
Course Code	Course	e Title	Course Type
BE1	Proteomics a	and Genomics	Elective
Course Code BE1 Credit	Barton Street H	P)	
	Lei ante	T	Р
5	4	1	0
Maximum Marks	c	IA .	ESE
100		50	40

Learning Objective (LO):

It will give understanding on identifying the structures of proteins and biological functions of specific individual proteins, their cellular activities separation techniques, whole protein interaction networks. Genomics will give understanding of altering a genome with unparalleled efficiency and precision. Genomics is fostering an appreciation for what our DNA means for our health, identities and culture.

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Introduction and scope of proteomics, Protein separation techniques	U
2.	Introduction to spectrometry and its applications ; Strategies for protein identification; Protein sequencing; Applications of proteome analysis	U
3.	Protein-protein interaction, Protein engineering; Clinical and biomedical application of proteomics; Proteome database; Proteomics industry.	E
4.	Introduction and Classification of genomics; Methods of preparing genomic DNA; Genome sequencing methods (next-generation sequencing); Databases of genomes; Genetic mapping;	U
5.	Gene variation and Single Nucleotide Polymorphisms (SNPs); Expressed sequenced tags (ESTs); Gene disease association; DNA fingerprinting; Microarray based techniques for RNA analysis; metagenomics.	U

CL:CognitiveLevels(R-Remember;U-Understanding;Ap-Apply;An-Analyze;E-Evaluate;C-Create).

POCO	State of	POs									PSO						
	tick1 kay	2	3	4	5	6	7	8	9	10	11	前1市	2	3	4	5	
COI	3	3	3	3	2	3	2	3	2	3	3	3	3	3	3	2	
CO2	3	3	3	3	2	3	2	3	2	3	3	3	3	3	3	2	
the	0	No.5	24		P.	67		E	yv	à	/	(G	der	/		

CO-PO/PSO Mapping for the course:

CO3 3														
CO4 3	$\frac{3}{2}$ 3	3	2	2	2	3	2	3	3	3	2	3	2	1
TC05 3	$\frac{3}{3}$ $\frac{3}{2}$	3	2	2	2	3	2	3	3	3	2	3	2	$\frac{1}{1}$
"3"-Strong:"2"-M	odani j	3	2	2	2	3	2	3	3	3	2	3	3	2

-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Unit No.	Detailed Syllabus: BE1 Genomics and Proteomics Topics	No. of	CO
I ———	Introduction and scope of proteomics; Protein separation techniques: ion exchange, size-exclusion and affinity chromatography techniques; Polyacrylamide gel electrophoresis; Isoelectric focusing (IEF); Two dimensional PAGE for proteome analysis; Image analysis of 2D gels.	Lectures 18	<u>No.</u> 1
Ш	identification; Protein sequencing; Protein modifications and proteomics; Applications of proteome analysis to drug	12	2
	Protein-protein interaction (Two hybrid interaction screening); Protein engineering; Protein chips and functional proteomics; Clinical and biomedical application of proteomics; Proteome database; Proteomics industry.	16	3
IV	Introduction and Classification of genomics; Methods of preparing genomic DNA; Genome sequencing methods (next-generation sequencing);Databases of genomes; Genetic mapping; Mapping of human genome; Human genome project; Hap Map Project, The genome project, and The ENCODE Project	14	4
v	Gene variation and Single Nucleotide Polymorphisms (SNPs); Expressed sequenced tags (ESTs); Gene disease association; DNA fingerprinting; Microarray based techniques for RNA analysis; metagenomics.	15	5

BOOKS SUGGESTED:

SN	Author	
1	John Wiley & Sons (1999)	Book Cantorand Smith, Genomics
2	Arthur M Lesk, Oxford University Press, 2007	Introduction to Genomics
3	R.M. Twyman 2004	Principles of Proteomics, BIOS Scientific Publishers
4	P. Michael Conn 2003	Handbook of Proteomic Method Humana
5	L. Stryer 2007	Press, Totowa, New Jersay, USA Biochemistry, W. H. Freeman and Co., New York

A15.24

A N

101

And 5

CO3	3	3	2	2	2	1 2			-	-			12	1 1		
CO4	02.		5	3	2	2	2	3	2	3	3	3	2	3	2	1
and the particular and second	3	3	3	3	2	2	2	3	2	3	3	3	2	3	2	1
CO5	3	3	3	3	2	2	2	2	2	2	-	2	10	-		-
"3"_1	Strong."2"	Med			~	1 4	2	3	2	3	3	3	2	3	3	2

3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: BE1 Genomics and Proteomics

No.	Topics	No. of Lectures	CO No.
1	Introduction and scope of proteomics; Protein separation techniques: ion exchange, size-exclusion and affinity chromatography techniques; Polyacrylamide gel electrophoresis; Isoelectric focusing (IEF); Two dimensional PAGE for proteome analysis; Image analysis of 2D gels.	18	1
п	Introduction to mass spectrometry; Strategies for protein identification; Protein sequencing; Protein modifications and proteomics; Applications of proteome analysis to drug	12	2
	Protein-protein interaction (Two hybrid interaction screening); Protein engineering; Protein chips and functional proteomics; Clinical and biomedical application of proteomics; Proteome database; Proteomics industry.	16	3
IV	Introduction and Classification of genomics; Methods of preparing genomic DNA; Genome sequencing methods (next-generation sequencing);Databases of genomes; Genetic mapping; Mapping of human genome; Human genome project; Hap Map Project, The genome project, and The ENCODE Project.	14	4
v	Gene variation and Single Nucleotide Polymorphisms (SNPs); Expressed sequenced tags (ESTs); Gene disease association; DNA fingerprinting; Microarray based techniques for RNA analysis; metagenomics.	15	5

BOOKS SUGGESTED:

4

SN	Author	Book
1	John Wiley & Sons (1999)	Cantorand Smith, Genomics
2	Arthur M Lesk, Oxford University Press, 2007	Introduction to Genomics
3	R.M. Twyman 2004	Principles of Proteomics, BIOS Scientific Publishers
4	P. Michael Conn 2003	Handbook of Proteomic Method. Humana Press, Totowa, New Jersay, USA
5	L. Stryer 2007	Biochemistry, W. H. Freeman and Co., New York

A15.24 Tr.V

el 5

O,

Program	Subject	Year	Semester				
Integrated M.Sc.	Biology	5	x				
Course Code	Course	e Title	Course Type				
BE2	Nanobiot	Nanobiotechnology					
Credit	Harris III III A	Hours Per Week (L-T					
	L	Т	P				
5	4	1	0				
Maximum Marks	C	IA	ESE				
100	6	i0	40				

Integrated M.Sc. Semester - X

>

Learning Objective (LO):

Course helps to understand numerous applications of nanotechnology in a wide variety of disciplines. Targeted drug delivery, diagnosis of diseases, bioimaging, nanomedicines, nanoarrays, and gene therapy are all being investigated as nanobiotechnology applications in biomedical sciences.

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1.	Concept of Nano- biotechnology, Historical background, Development. Fundamental sciences and broad areas of Nanobiotechnology.	U
2.	Nanomaterial in biotechnology - nanoparticles, quantum dots, nanotubes and nanowires etc. Nanostructures-Overview and introduction,	U
3.	Biosensors, Application of various transducing elements as part of nanobiosensors.	E
4.	Miniaturized devices in nanobiotechnology - types and applications, Biological nanoparticles production - plants and microbial, methods, Properties, Characterization and applications.	Ар
5.	Nanobiotechnological applications in health and disease	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		ALC: NO	20-22	655	POs			A 10	12:36		×	PSO	-	100	JER	100
	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
COI	3	3	3	2	3	3	3	3	2	3	2	3	2	3	2	2
CO2	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2
CO3	3	3	3	3	2	3	3	3	1	3	3	3	3	3	3	1
CO4	3	3	3	3	2	3	3	3	1	3	3	3	3	3	3	
CO4 CO5	3	3	3	3	2	3	3	3	2	3	3	3	3	3	3	2

"3" Strong; "2"-Moderate; "1"-Low; "-"No Correlation

Unit No.	Detailed Syllabus: BE2 Nanobiotechnology Topics	No. of Lectures	CC No.
I	The nanoscale dimension and paradigm, various definitions and Concept of Nano- biotechnology, Historical background, Development. Fundamental sciences and broad areas of Nanobiotechnology.	12	1
11	Nanomaterial in biotechnology - nanoparticles, quantum dots, nanotubes and nanowires etc. Cell – Nanostructure interactions. Protein-based Nanostructures, Cell as Nanobio-machine, DNA- Protein Nanostructures-Overview and introduction, DNA- Protein conjugates in microarray technology.	18	2
ш	Biosensors; molecular recognition elements, transducing elements. Applications of molecular recognition elements in nanosensing of different analytes, Application of various transducing elements as part of nanobiosensors.	16	3
IV	Miniaturized devices in nanobiotechnology - types and applications, lab on a chip concept. Biological nanoparticles production - plants and microbial, methods, Properties, Characterization and applications.	14	4
v	Nanobiotechnological applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation.	15	5

BOOKS SUGGESTED:

SN	Author	Book					
1	A. Mirkin (Editor), Wiley VCH 2004	Nanobiotechnology: Concepts, Applications Perspectives					
2	Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.	Nanobiotechnology-II more concepts and applications.					
3		Nanotechnology in Biology and Medicine: Methods, Devices, and Applications					

Integrated M.Sc. Semester - X

Program	Subject	Year	Semester			
Integrated M.Sc.	Biology	5	X			
Course Code	Соц	Course Type				
BE3	Plant Gen	Plant Genetic Engineering				
Credit	A State of the second se	Hours Per Week (L-T-	P)			
	L.	T	Р			
5	4	ļ	0			

10.00

Sa

0

	CIA	ESE
Maximum Marks	CIA	40
100	60	40

It will provides understanding to introduce traits such as pest and disease resistance, improved protein quality, and herbicide tolerance from previously unavailable sources. Plant transformation provides a key tool for much basic research, such as the study of gene functions and interactions, protein-protein interactions, developmental processes, as well as applications for crop improvement and the development of plant bioreactors to produce vaccines.

		CL
CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	U
1.	Understanding of basic of gene transformation in plants, vector construction and	U
2.	Understanding the manipulation in various gene involved with nutrient uptake and	E
3.	Evaluation of marker assisted selection and increased production of useful molecules	Ap
4.	Application of genetic engineering in chloroplast transformation and gene	
5.	Understanding of plant metabolic engineering and application of secondary metabolites	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	Trans Print	-	an over	S	POs	STREET,			(B)8000	ODSEA		PSO	1 1000	35027	a current	11251
TOCO	1001	2	3	243	5	6	18 7 1	8	9	10	11	急1部	2	3	4	5
CO1	3	3	3	3	3	3	3	2	2	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	2	2	3	3	2	3	2
CO3	3	3	3	3	3	3	2	2	3	2	2	3	3	2	3	1
CO4	3	3	3	3	2	2	2	2	2	2	2	3	2	2	3	1
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Unit No.	Topics	No. of Lectures	CO No.
I	Plant transformation vectors and methods: T-DNA and viral vectors; Selectable marker and reporter genes, Plant transformation by Agrobacterium sp., Molecular mechanism of T-DNA transfer; in planta transformation; Direct gene transfer methods in plants.	14	1
П	Genetic engineering for increasing crop productivity by manipulation of Photosynthesis, Nitrogen fixation, Nutrient uptake efficiency. Genetic engineering for biotic stress tolerance (Insects, fungi, bacteria, viruses, weeds). Genetic engineering for abiotic stress (drought, flooding, salt, metal and temperature)	12	2
Ш	Genetic engineering for quality improvement of Protein, lipids,	16	3

	carbohydrates, vitamins & mineral nutrients, Plants as bioreactor, Marker-assisted selection of qualitative and quantitative traits. Concept of gene synteny, Concept of map-based cloning and their use in transgenics.		
IV	Chloroplast transformation; Transgene analysis, silencing and targeting; Marker-free and novel selection strategies; Multigene engineering; Gene knock-down by ribozymes, antisense RNA and RNA interference.	18	4
v	Plant Metabolic Engineering. The concept of secondary metabolites, Historical and current views, Importance of secondary metabolites in medicine and agriculture, Introduction to various pathways, Flavanoid pathway, Terpenoid pathway, Polyketoid pathway, Plant vaccine.	15	5

BOOKS SUGGESTED:

SN	Author					
1	Bhojwani S.S. & Razdan M.K. (Elsevier)	Book				
2	Slatar A. Scott M. G. Razdan M.K. (Elsevier)	Plant Tissue Culture: Theory and Practice				
	Slater A. Scott N. & Fowler M. Oxford University Press Inc.	Plant Biotechnology: The Genetic Manipulation				
3	Chrispeels M.J. & Sadava D.E. Jones and Barlett Publishers	Plants, Genes and Crop Biotechnology				
4	Primrose S. B. & Twyman R. M. Blackwell Publishing.	Principles of Gene Manipulation and Genomics				
5	Gamborg O. L & Phillips G. C. Springer- Verlag.	Plant Cell, Tissue and Organ Culture: Fundamental Methods. (Eds).				

Integrated M.Sc. Semester - X

Program	Subject	Year	Semester	
Integrated M.Sc.	Biology	5	X	
Course Code	Course	Title	Course Type	
BE4	Plant Microb	Elective		
Credit	Н	P)		
	L L	T	P	
5	4	1	0	
Maximum Marks	CI	Α	ESE	
. 100	60)	40	

Learning Objective (LO):

It will provide Understanding of the molecular mechanisms of plant-microbe interaction which would help develop innovative genetic engineering strategies of symbiosis, mutualism, and disease resistance through gene editing, RNA silencing, and other approaches.

10

Cours	se Outcome (CO):	1 CI
CO	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1.	Understanding of recent development in plant pathology, Significance of plant diseases, and plant-microbe associations	U
2.	Know about the beneficial Plant - Microbe association	U
3.	Better understanding of Parasitism and disease development, Pathogenecity, host range of pathogens, disease cycle and epidemics.	E
4.	Deeper insights of biotrophic and necrotrophic fungi, Virus and Viroid genes involved in pathogenicity	Ар
5.	Have intense knowledge of Molecular genetics of plant disease susceptibility and resistance	Ар

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	POs													10010		
	1	2	3	949	5	6	7	8	9	10	11	1	2	32	2014	5
CO1	3	3	3	3	2	3	2	2	2	3	3	3	3	2	3	3
CO2	3	3	3	2	3	2	2	3	2	3	2	3	2	3	2	3
CO3	3	3	3	3	3	3	2	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	1
CO5	3	3	3	3	3	3	2	3	2	3	3	3	3	3	3	1

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BE4 Plant Microbe Interaction

Unit No.	Topics	No. of Lectures	CO No.
1	History of Plant pathology and recent developments: Significance of plant diseases, and pathology, types of plant-microbe associations (pathogenic-bacteria, virus, fungi, and symbiotic).	12	1
п	Beneficial Plant - Microbe interactions (molecular aspects): a. Nitrogen fixing bacteria and blue green algae b. Mycorrhizal association c. Phytohormones and Biocontrol antibiotics	16	2
III	Parasitism and disease development: Pathogenecity, host range of pathogens, disease cycle and epidemics.	18	3
IV	Molecular biology of pathogenicity: Mechanisms of variability in pathogens, pathogenicity genes and mechanisms in pathogenic bacteria, biotrophic and necrotrophic fungi, Virus and Viroid genes involved in pathogenicity, Agrobacterium and plant interaction-a model system.	14	4
v	Molecular genetics of plant disease susceptibility and resistance: Types of plant resistance to pathogens (R gene resistance, quantitative and monogenic), basal and induced defense mechanisms, pre-formed inhibitors of pathogens, gene for gene interaction in plant defense,	15	5

Boos

24

Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen interaction.

BOOKS SUGGESTED:

4

SN	Author	
1	Agrios G. N. Academic Press	Book
2	Dickinson M. BIOS ScientificPress	Plant Pathology
3	Jeng-Sheng H. T Kluwer Academic Pubs. T	Molecular Plant pathology
	Gen 904 (ii) MEDICA	Plant Pathogenesis and Resistance: Biochemistry and Physiology of Plant- Microbe Interactions

Integrated	M.Sc.	Semester -	- X
------------	-------	------------	-----

riogram	Subject	Year	Semester
ntegrated M.Sc.	Biology	5	
Course Code		5	x
	Course	Course Type	
BE-5	NEUROBI	ELECTIVE	
Credit		APRO DE LEMAN MERCINE	
	L	Т	Р
5	4	1	0
Maximum Marks	C	IA	ESE
100		50	40

Learning Outcome (LO): It will give deep understanding of nervous system, brain and its structure and functions.

Course Outcomes(CO):-

CO No,	Expected Course Outcomes At the end of the course, the students will be able to:	CL
1	Chemical composition of the brain: cells, structure, function and metabolism	U
2	Neurotransmitters, mechanism of action of neurotransmission	U
3	Sleep and Learning and memory: Electroencephalogram. Role of second messenger pathways in learning and memory process. Role of synaptic plasticity.	U
4	Sensory organs: Vision: Audition:	Ap
5	Chemical senses: Olfaction and Taste, mechanism of function Touch/pain: Pathologies of the nervous system:	Ap

CL:CognitiveLevels(R-Remember;U-Understanding;Ap-Apply;An-Analyze;E-Evaluate;C-Create).

10.5.24

-PO/PS	100000		i marti		5.7.2	1252	POs			19-10 I	1112	-	10	1	2	3	4	5	16
-0.00	1	2	3	4	5	6	7	8	9	10	11	12	13	01.59	2	1	3	3	
CO1	3	2	3	2	2	3	3	3	3	3	3	3	1	3	3	1	2	1	
and the second s	2	1	5	1	1	3	3	3	3	1	3	3	1	3	3	3	3		
CO2	3	1	-	1	1	2	2	3	3	1	3	3	1	3	3	1	3	I	1
CO3	3	3	3	5	3	3	3	5		1	2	3	1	3	3	1	3	1	1
CO4	3	2	2	3	3	3	3	3	3	1	1	2	Ĥ	3	3	1	3	1	1
CO5	3	1	1	3	2	3	-2	3	3	1	3	5	1	5	5				-

Detailed Syllabus: BE-5: NEUROBIOLOGY

ał:

.

0

	Detailed Syllabus: BE-5: NEUROBIOLOGY	Noof	CO
Unit	Торіс	lectures	and the second
<u>Unit-I</u>	The glial system: Generation of Astrocytes, Oligodendrocytes, and Schwan cells. Function of glia in normal brain and in neuroprotection. Chemical composition of the brain: metabolism (utilization and uptake of glucose and amino acids). Blood-Brain barrier.	15	1
<u>Unit II</u>	Neurotransmitters: Synthesis, storage, release, uptake, degradation and action of neurotransmitters, Acetyl choline, GABA, Serotonin, Dopamine, Glutamate, Nitrous oxide, etc. Receptors: different subtypes (cholinergic, dopaminergic, adrenergic, and glutamatergic), mechanism of action, Agonists and Antagonists – their mode of action and effects. Exocytosis of neurotransmitter – Role of synapsins, synaptogamins, SNAP, SNARE and other proteins in docking, exocyotosis and recycling of vesicles.		2
<u>Unit-III</u>	Sleep and Learning and memory: Mechanism of short-term memory and Long-term memory (longterm potentiation). Role of sleep in memory consolidation. Electroencephalogram. Role of second messenger pathways in learning and memory process. Role of synaptic plasticity.	15	3
<u>Unit-IV</u>	Sensory organs: Vision: Biochemistry of vision: Rod and cone cells, mechanism and regulation of vision, color vision, visual field, visual acuity. Visual pathway and topographic mapping. Audition: functional anatomy of the middle and inner ear. Amplification of sound. Functional anatomy and mechanism of detection of specific sound frequency in the inner ear. Mechanism of action of the mechanosensory receptors in the inner ear.	15	4
<u>Unit-V</u>	Chemical senses: Olfaction: The olfactory pathway, mechanism and the combinatorial code of detecting a smell. Taste: Mechanism of taste perception. Touch/pain: The touch/pain/temperature pathway (ascending and descending). Higher order integration in the brain. Pathologies of the nervous system: Molecular basis of Parkinson's disease, Alzheimer's disease, Schizophrenia, Myasthenia gravis and	15	5

Molin Bai

wig

-

S.No.	Author	Book			
2.	Ferdinand Hucho	Neurochemistry			
3.	MP Spiegel	Basic Neurochemistry			
з.	Koenig and Edward	Cell Biology of the Axon, Series: Results &			
4.	Eric Kendel, JH Schwartz, T Jessel	Problems in Cell Differentiation, Vol. 48			
5.	A Guyton and J Hall	Principles of neural Sciences			
	A duyton and J Hall	Textbook of medical Medical physiolog			

Integrated M.Sc. Semester - X

Program	Subject	Year	Semester
Integrated M.Sc.	Biology	5	Y CONTRACTOR
Course Code	Course	Title	Course Type
BE6	Plants for Hu	man Welfare	Elective
Credit	He		
	L	T	P
5	4	1	0
Maximum Marks	CI	A	ESE
100	60		40

Learning Objective (LO):

é.

Ch

It will provide knowledge that Plants provide many products for human benefits, such as timber, fibres, medicines, dyes, firewood, pesticides, oils, and rubber. Medicinal plants provide major source of molecules with medicinal properties due to presence of natural compounds.

At the end of the course, the students will be able to:	CL
A general overview of economically important plants and their role in human 16	
Medicinal: Traditional plants as source of drugs against role in human wenare	U
characterization and elicitation of bioactive metabolites	U
Nutraceuticals and functional foods, transgenic approaches and constraints for improvement	U
source of fuel	Ар
Plants as a source of timber, with special reference to their improvement through breeding and genetic transformation.	Ap
	Nutraceuticals and functional foods, transgenic approaches and constraints for improvement Plant-based biofuels Extraction and economic viability; application as alternate source of fuel Plants as a source of timber, with special reference to their improvement through

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

A

POCO	105 Barris	Alter a	in the second	100	POs	S. Carlot	1000	k sulon	a state		1	PSO	a and s	a state	in the second	32
	深度1月20日	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
COI	3	3	3	2	3	3	2	2	1	2	3	3	3	2	2	2
CO2	3	3	3	2	3	3	2	2	1	2	3	3	3	2	2	2
CO3	3	3	3	2	3	3	2	3	1	2	3	3	3	3	2	1
CO4	3	3	3	2	3	3	2	3	1	2	3	3	3	3	2	1
CO5	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3

CO-PO/PSO Mapping for the course:

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BE6 Plants for Hun	nan Welfare	
---------------------------------------	-------------	--

Unit No.	Topics	No. of	CO
Ι	A general overview of economically important plants and their role in human welfare as food, oil, drugs, nutraceuticals, fuel. Food crops: Cereals; Spices and condiments; Alcoholic and non-alcoholic beverages.	Lectures 12	<u>No.</u> 1
II	Medicinal: Traditional plants as source of drugs against several diseases such as cancer, diabetes, malaria, dengue, psoriasis, etc. Plant secondary metabolites; classification, knowledge of extraction, isolation, characterization and elicitation of bioactive metabolites.	15	2
Ш	Nutraceuticals and functional foods; Important plants such as Aloe vera, Piper, Withania, Ginseng, Amaranthus etc. yielding antioxidants and nutraceutical compounds. Edible and non- edibleoils: Oil yielding plants, transgenic approaches and constraints for improvement indifferent oils. Essential oils.	16	3
IV	Plant-based biofuels e.g., Difference between first and 2nd generation biofuels, Jatropha, Pongamia, Zea mays, Madhuca, etc. Extraction and economic viability; application as alternate source of diesels, Bioelectricity.	14	4
v	Plants as a source of timber: e.g., <i>Tectona grandis, Salix sp.,</i> <i>Dalbergia sisso</i> , Fibre yielding plants: Cotton (<i>Gossypium sp.</i>), Jute (<i>Corchorus sp.</i>) with special reference to their improvement through breeding and genetic transformation e.g., Bt cotton.	18	5

BOOKS SUGGESTED:

SN	Author	Book
1	R.N. Chopra, S.L. Nayar and I.C. Chopra, 1956. C.S.I.R, New Delhi	Glossary of Indian medicinal plants
2	Kanny, Lall, Dey and Raj Bahadur, 1984. International Book Distributors	The indigenous drugs of India
3	Agnes Arber, 1999. Mangal Deep	Herbal plants and Drugs
	0	

5/5/2

10:5.24

4	Publications.	
	Acharya, Deepak; Anshu, Shrivastava (2008)	Indigenous Herbal Medicines: Tribal Formulations and Traditional Herbal Practices. Jaipur, India:
5	Raven Peter H Event D E	Aavishkar Publishers
	Raven, Peter H., Evert, Ray F., Eichhorn, Susan E (2005)	Biology of Plants (7 th ed.). New York: W. H. Freeman and Company

Integrated M.Sc. Semester - X

rogram	Subject	Year	Semester			
ntegrated M.Sc.	Biology	5				
Course Code	and the second sec	5	х			
	Course	Title	Course Type			
BE-7	Animal Tissue Culture	and the second	ELECTIVE			
Credit	and the second state of th		ELECTIVE			
credit						
	L	T	P			
5	4	The second se	Contraction of the second second second			
Maximum Mar	10 I	0				
	NS (ESE				
100		60				
			40			

Course Outcomes(CO):-

Program

é

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	CI
1	Introduction and significance of Animal cell culture, historical background of cell culture. Types of cell culture: Laboratory requirements for animal cell culture	U
2	Culture requirements and reagents	L
3	Types of cell culture: Different types of cell cultures, Cell lines:Introduction, development of cell lines	U
4	Stem cell research, Current status and application in medicine. Application of animal cell culture for in vitro testingofdrugs; Application of cell culture technology in production of human and animal viral vaccines and pharmaceutical proteins.	Ар
5	Gene transfer technology in animals,:Techniques,relevance and ethical issues.	Ар

CL:CognitiveLevels(R-Remember;U-Understanding;Ap-Apply;An-Analyze;E-Evaluate;C-Create).

10.00,1

10.5.24

POCO	Suc:	POs									PSO								
	器1號	2	3	4	5	6	7	8	0	10	11	12	13	11 III	2	3	4	5	6
CO1	3	2	3	3	2	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO2	3	2	2	3	2	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO3	3	2	2	3	2	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO4	3	2	2	3	3	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO5	3	1	1	3	2	3	2	3	3	1	3	3	1	3	3	1	3	3	1

PO-CO/PSO Mapping of the course-

Detailed Syllabus: BE- 7 Animal Tissue Culture

Unit	Topics	No of	CO
Chit	Topics	lectures]
<u>Unit-I</u>	Introduction and significance of Animal cell culture, historical background of cell culture. Types of cell culture: Primary and secondary cell culture.Laboratory requirements for animal cell culture: Sterile. Sterilization of different materials used in animal cell culture, Aseptic concepts. Instrumentation and equipments for animal cell culture.	15	1
<u>Unit II</u>	Culture requirements and reagents: Culture media, properties of media, Types of cell culture media, Ingredients of media, Physiochemical properties, Antibiotics, growth supplements, Foetal bovine serum; Serum free media, Trypsin solution, Selection of medium and serum, Conditioned media, Other cell culture reagents, Preparation and sterilization of cell culture media, different types of serum and other reagents.	15	
<u>Unit-III</u>	Types of cell culture: Different types of cell cultures, Trypsinization, Cell separation, Continuous cell lines, Suspension culture, Organ culture. Cell lines: Introduction, development of cell lines, Characterization and maintenance of cell lines, stem cells, Cryopreservation, Common cell culture contaminants.	15	3
<u>Unit-IV</u>	Stem cell research: Stem cell types, properties and biological significance, Current status and application in medicine. Application of animal cell culture for in vitro testing of drugs; Application of animal viral vaccines and pharmaceutical proteins. Production of different recombinant proteins. General account of in vitro regulation of blood cells production.	15	4
<u>Unit-V</u>	Gene transfer technology in animals: Different method in gene transfer technology in animals, viral and non-viral methods,	15	5

P

Production of transgenic animals, current status in the field of transgenic animals. Animal cloning: Techniques, relevance and ethical issues.

Books recommended:

- 1. Freshney, Culture of Animal Cells, 5th Edition, Wiley-Liss, 2005
- Ed. John R.W. Masters, Animal Cell Culture Practical Approach, 3rd Edition, Oxford University Press, 2000.
- 3. Ed.MartinClynes, AnimalCellCultureTechniques, Springer, 1998.
- 4. B.Hafez, E.S.EHafez, Reproduction in Farm Animals, 7th Edition, Wiley-Blackwell, 2000.
- 5. Louis-MarieHoudebine, TransgenicAnimals: GenerationandUse, 1stEdition, CRC Press, 1

Integrated M.Sc. Semester -

Program	Subject	Year	Semester			
ntegrated M.Sc.	Biology	- 5	X			
Course Code	Course	Title	Course Type			
BES	EARTH SCIENCE A ENVIRONMENTA	ELECTIVE				
Credit						
	L	T	P			
5	4	1	0			
Maximum Marks		ESE				
100		60				

Course Outcomes(CO):-

Expected Course Outcomes At the end of the course, the students will be able to:	CL
It will provide understanding of -Origin of the earth, type of rocks in different layers, their physical and chemical properties.	L
Geodynamo and the internal magnetic field of the earth. Seismology and its use in understanding of the different layers in the earth's interior.	U
Introduction to Environmental Science. Natural Environments	L
Water harvesting, storage and treatment.Natural calamities,	Ap
Energy conservation, Alternative to fossil fuels, Bio-based fuels.	Ap
	At the end of the course, the students will be able to: It will provide understanding of -Origin of the earth, type of rocks in different layers, their physical and chemical properties. Geodynamo and the internal magnetic field of the earth. Seismology and its use in understanding of the different layers in the earth's interior. Introduction to Environmental Science. Natural Environments Water harvesting, storage and treatment.Natural calamities,

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

PO-CO/PSO	Mar	p	ing	
-----------	-----	---	-----	--

POCO	1930	1	113.23	7/5-11	biza est	2 M	POs	110		and a state	L.S.Left	- Incli	in and	102012	-	PS 2	1	5	6
	恒1億	2	3	4	5	6	7	8	9	10	11	12	13	18 W	2	3	2	3	3
CO1	3	3	3	1	2	3	2	3	3	1	3	3	3	3	3	1	3	2	1
CO2	3	3	2	1	1	3	3	3	3	1	3	3	2	3	3	1	3	3	2
CO3	3	3	3	2	2	3	3	3	3	1	3	3	2	3	3	1	3	3	3
CO4	3	3	2	1	1	3	3	3	3	1	3	3	2	3	3	1	3	3	3
CO5	3	3	2	$\frac{1}{1}$	1	3	3	3	3	$\frac{1}{1}$	3	3	2	3	3	1	3	3	3

ß

CO

Detailed Syllabus: BE8-Earth Science And Energy & Environmental Sciences

Unit	Topic	No of lectures	со
<u>Unit-I</u>	Origin of the earth, type of rocks in different layers, their physical and chemical properties.Mechanism of their formation and destruction. Radioactivity and its role in geochronology, Platetectonics and geodynamics and the role of mantle plumes in sustaining these processes.Gravity, electrical, seismic and magnetic properties of the different layers in the earth.Their variations in different geological terrains. Instrumentation, field procedures used in these studies. Response of the earth to the elastic (Seismic) and electromagnetic waves, use of this phenomena to study the earth's interior.	15	1
<u>Unit II</u>	Geodynamo and the internal magnetic field of the earth. Paleomagnetic studies, Polar wandering and reversal, possible theoretical arguments for understanding the phenomena.Seismology and its use in understanding of the different layers in the earth's interior.Utility of the different geophysical techniques (discussed above) in exploration for academic as well as for harnessing resources.		
<u>Unit-III</u>	Introduction to Environmental Science. Natural Environments: Ecosystems and ecology, biodiversity. Socio-cultural environments: demography, population density, human organizations. Land use and its planning. Global climate change and effects on environment. Carbon cycle from human activity, calculation of carbon budgets.	15	3
Unit-IV	Water harvesting, storage and treatment.Natural calamities, hazards, and effects of humana ctivity: Chemical and other technological hazards. Introduction to energy Sources- evolution of energy sources with time. Power production, per capita consumption in the world, and relation to development index. Energy scenario in India:Various issues related to consumption and demands -energy crisis issues in India. Renewable andnon -renewable energy sources- technology and commercialization of energy sources, local (decentralized)versus centralized energy production, constraints and opportunities of renewable energy (hydrocarbon and coal	15	4

5.24

	based energy sources).		
<u>Unit-V</u>	Energy conservation calculation of energy requirements for typical and home and industrial applications. Alternative to fossil fuels -solar, wind, tidal, geothermal. Bio-based fuels. Hydrogen as a fuel. Energy transport and storages, comparison of energy sources -passage from source to delivery (source, production, transport, delivery)- efficiencies, losses and wastes. Nuclear energy: Power production: Components of a reactor and its working, types of reactors and comparison. India's three stage nuclear program. Nuclear fuel cycle. Thorium based reactors. Regulations on nuclear energy.	15	5

Books Recommended:

S.No.	Author	Book
1	Merill RT, McElhinny MW and	The magnetic field of the Earth:
1	McFadden PL	International Geophysical Series
2	EdwardJ, TarbuckEJ and LutgensFK	Earth Science
3	HR Sheehan et al.,	Introduction to Applied Geophysics: Exploring the Shallow Subsurface Burger
4	Condie KC	Mantle Plumes and Their Recording Earth History; Cambridge University Press, Cambridge, UK

Integrated M.Sc. Semester - VIII

Program	Subject	Year	Semester					
Integrated M.Sc.	Biology	4	VIII					
Course Code	Cours	Course Type						
SEBL801	Statistical Tools in	Skill Enhancement Course						
Credit	Hours Per Week(L-T-P)							
	L	Т	Р					
2	0	0	4					
Maximum Marks	C C	ESE						
100	CHE AND TREASURED IN A DESCRIPTION OF A	40						

Learning Objective (LO): To understand various statistical tools used in biological research.

0

Cour	se Outcomes(CO):-	CL
CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	Α
1.	Basic knowledge of SPSS software tool, Preparation and presentation of same	E
2.	Provide knowledge of calculating Descriptive statistics	E
3.	The state of the s	E
4.	Provide knowledge of Parametric and Won-parametric real operation of different charts Provide knowledge of ANOVA, Comparison of means, preparation of different charts	E
5.	Provide knowledge of ANOVA, Comparison of means, prepared Provide basic knowledge of NTSYS Pc software, Jaccard coefficient, Principle component Analysis, Dendrogram construction	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create

	-	ing for t			P	Os						_	_	PSC	1.	6
POCO	-	12	1 2	14	15	6	7	8	9	10	11	1	2	3	4	P
	1	2	3	4	5		-12	1		2	2	3	1	2	-	3
COI	3	3	3	2	2	1	2	1	-	-	-	1	-	2	-	3
CO2	3	3	3	2	2	1	2	1	-	2	2	5	1	-4	-	-
		2	2	12	2	1	2	1	-	2	2	3	1	2	-	2
CO3	3	3	3	4	-			1	-	2	2	3	1	2	-	2
CO4	3	3	3	2	2	1	2	1	-	2	4	-	-		-	5
CO5	3	3	3	1	2	1	2	1	-	2	2	3	1	2	-	12

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: SEBL801 Statistical Tools in Biological Research

Unit No.	Topics	No. of Lectures	CO No.
1	Introduction to SPSS software tool, Basic data preparation, Creating variables, entering data, Data management using SPSS	5	1
11	Experimental design strategy, Descriptive statistics using SPSS tool: Frequency distribution, Data types/Binomial Distribution, Poisson Distribution, Normal Distribution, Measures of central tendency, Measures of variability / Dispersion, Measures of deviation from the Normality	5	2
111	Parametric: One-sample t-test 2.4.2 Independent Sample t-test 2.4.3 Paired Sample t-test and Non-parametric tests, ANOVA, Comparison of means, Investigating relationship between variables-Correlation and Regression, Pearson Correlation, Spearman Rank Correlation, Partial Correlation	7	3
IV	Making Graphs and Charts using SPSS: Line Graphs, Bar Charts, Pie	7	4

	Charts, Histograms, Scatter Plots, Box Plots, Error Bars, High-Low Bars, Population Pyramids		
V	Introduction to NTSYS Pc software, Creating data file, Jaccard coefficient, Principle component Analysis, Dendrogram construction	6	5

Mul porton Alegarian 10.00.000

